{"title":"Mixer influence on pore characteristics and fiber dispersion in Engineered Cementitious Composites across various strength grades","authors":"Minjin Cai , Hehua Zhu , Timon Rabczuk , Xiaoying Zhuang","doi":"10.1016/j.conbuildmat.2025.140380","DOIUrl":null,"url":null,"abstract":"<div><div>Variability in pore characteristics and fiber dispersion among Engineered Cementitious Composites (ECC) prepared with different mixers crucially determines their mechanical behavior, highlighting the importance of mixer selection in ECC processing. However, the research on the mesoscopic performance of mixer types is currently inadequate. To address this deficiency, this paper employed three prevalent ECC mixers—pan, handheld, and planetary—to analyze the macroscopic performance and microscopic features of ECC across all strength grades. Utilizing CT-scan-based 3D reconstruction technology, it investigated the interplay between porosity traits, fiber dispersion, and the mechanical properties of ECCs fabricated with these mixers at various strength levels. Findings demonstrate the planetary mixer's dominance in producing ECC with superior compressive, tensile, and flexural strengths due to its ability to ensure even fiber distribution and form a more spherical pore structure. The advantage of planetary mixers becomes more evident with increasing compressive strength grades, consistently maintaining a fiber volume fraction of 1.5–2.5 % at higher strengths. In comparison, while handheld mixers achieve moderate performance, they fall short of planetary mixers' efficiency in attaining homogenous pore structures and fiber distribution. Pan mixers exhibit declining fiber distribution and increased pore irregularity as strength enhances, resulting in the poorest mechanical performance. This study delineates the impact of mixers on ECC's properties and reinforces the critical role of mixer choice in achieving desired mechanical characteristics in advanced engineering applications.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"467 ","pages":"Article 140380"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061825005288","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Variability in pore characteristics and fiber dispersion among Engineered Cementitious Composites (ECC) prepared with different mixers crucially determines their mechanical behavior, highlighting the importance of mixer selection in ECC processing. However, the research on the mesoscopic performance of mixer types is currently inadequate. To address this deficiency, this paper employed three prevalent ECC mixers—pan, handheld, and planetary—to analyze the macroscopic performance and microscopic features of ECC across all strength grades. Utilizing CT-scan-based 3D reconstruction technology, it investigated the interplay between porosity traits, fiber dispersion, and the mechanical properties of ECCs fabricated with these mixers at various strength levels. Findings demonstrate the planetary mixer's dominance in producing ECC with superior compressive, tensile, and flexural strengths due to its ability to ensure even fiber distribution and form a more spherical pore structure. The advantage of planetary mixers becomes more evident with increasing compressive strength grades, consistently maintaining a fiber volume fraction of 1.5–2.5 % at higher strengths. In comparison, while handheld mixers achieve moderate performance, they fall short of planetary mixers' efficiency in attaining homogenous pore structures and fiber distribution. Pan mixers exhibit declining fiber distribution and increased pore irregularity as strength enhances, resulting in the poorest mechanical performance. This study delineates the impact of mixers on ECC's properties and reinforces the critical role of mixer choice in achieving desired mechanical characteristics in advanced engineering applications.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.