Characterization of a novel green-revertible albino mutant in alfalfa (Medicago sativa L.)

IF 4 3区 生物学 Q1 PLANT SCIENCES Journal of plant physiology Pub Date : 2025-02-11 DOI:10.1016/j.jplph.2025.154452
Jia Wei, Linghua Yang, Xia Wang, Zhengfeng Cao, Chuanjie Wang, Haowen Cheng, Bo Luo, Zhenwu Wei, Xueyang Min
{"title":"Characterization of a novel green-revertible albino mutant in alfalfa (Medicago sativa L.)","authors":"Jia Wei,&nbsp;Linghua Yang,&nbsp;Xia Wang,&nbsp;Zhengfeng Cao,&nbsp;Chuanjie Wang,&nbsp;Haowen Cheng,&nbsp;Bo Luo,&nbsp;Zhenwu Wei,&nbsp;Xueyang Min","doi":"10.1016/j.jplph.2025.154452","DOIUrl":null,"url":null,"abstract":"<div><div>High-temperature-sensitive leaf color mutants are ideal materials for studying photosynthetic pigment biosynthesis and corresponding response mechanisms under heat stress. Here, we provide the first report of albinism occurrence in alfalfa and characterize the high-temperature albino regreen (<em>har</em>) mutant of alfalfa, which presents albino leaves when exposed to temperatures ≥35 °C and is not specific to developmental stage. Genetic analysis demonstrated that the albino trait exhibits dominant inheritance. Agronomic trait evaluations revealed that the <em>har</em> mutants were slightly but negatively affected by albinism. However, under high temperature, albino leaves had a severe negative effect on the photosynthesis-related traits of <em>har</em> mutants. Cytological analysis revealed that the albino leaf cells contained disintegrated chloroplasts, suggesting a defect in chloroplast development. Moreover, this study involved a comprehensive investigation of the enzymes associated with the photosynthetic pigment biosynthetic pathway of the <em>har</em> mutant under high-temperature stress using RNA sequencing. Notably, high-temperature-induced differential leaf color traits in alfalfa result in distinct photosynthetic pigment biosynthetic pathways. Twelve key regulatory genes involved in the chlorophyll biosynthesis and degradation pathways, as well as four key regulatory genes involved in carotenoid biosynthesis pathways, were identified. Our study aims to provide a theoretical foundation for further research into the intrinsic mechanisms underlying albino leaves in alfalfa <em>har</em> mutants subjected to high-temperature stress and for the breeding of new germplasms with desirable pigmented leaves.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"306 ","pages":"Article 154452"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161725000343","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature-sensitive leaf color mutants are ideal materials for studying photosynthetic pigment biosynthesis and corresponding response mechanisms under heat stress. Here, we provide the first report of albinism occurrence in alfalfa and characterize the high-temperature albino regreen (har) mutant of alfalfa, which presents albino leaves when exposed to temperatures ≥35 °C and is not specific to developmental stage. Genetic analysis demonstrated that the albino trait exhibits dominant inheritance. Agronomic trait evaluations revealed that the har mutants were slightly but negatively affected by albinism. However, under high temperature, albino leaves had a severe negative effect on the photosynthesis-related traits of har mutants. Cytological analysis revealed that the albino leaf cells contained disintegrated chloroplasts, suggesting a defect in chloroplast development. Moreover, this study involved a comprehensive investigation of the enzymes associated with the photosynthetic pigment biosynthetic pathway of the har mutant under high-temperature stress using RNA sequencing. Notably, high-temperature-induced differential leaf color traits in alfalfa result in distinct photosynthetic pigment biosynthetic pathways. Twelve key regulatory genes involved in the chlorophyll biosynthesis and degradation pathways, as well as four key regulatory genes involved in carotenoid biosynthesis pathways, were identified. Our study aims to provide a theoretical foundation for further research into the intrinsic mechanisms underlying albino leaves in alfalfa har mutants subjected to high-temperature stress and for the breeding of new germplasms with desirable pigmented leaves.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of plant physiology
Journal of plant physiology 生物-植物科学
CiteScore
7.20
自引率
4.70%
发文量
196
审稿时长
32 days
期刊介绍: The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication. The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.
期刊最新文献
Characterization of a novel green-revertible albino mutant in alfalfa (Medicago sativa L.) Small molecules and ions: Minor yet vital in plants Isolation of OSCAs in wheat and over-expression of TaOSCA14D increased salt stress tolerance Regulation of iron homeostasis by IMA1 and bHLH104 under phosphate starvation in Arabidopsis Molecular and biochemical analyses of germination of cowpea (Vigna unguiculata L.) seeds inhibited by n-propyl gallate reveal a key role of alternative oxidase in germination Re-establishment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1