{"title":"Reusable beverages packaging: A life cycle assessment of glass bottles for wine packaging","authors":"Justus Caspers, Pauline Bade, Matthias Finkbeiner","doi":"10.1016/j.clet.2025.100914","DOIUrl":null,"url":null,"abstract":"<div><div>Bottle production constitutes up to 70% of the greenhouse gas emissions of wine consumption. However, a reuse system comes along with additional environmental burdens, namely via the impact of cleaning processes and increased transport distances for the return of packaging. Hence, the objective of this study is to assess the potential environmental implications associated with both reuse and single-use for wine bottles, by means of life cycle assessment (LCA).</div><div>Under the assumption based on wine consumption in Germany, the reusable bottle exhibits a reduced environmental impact in four out of five considered impact categories (climate change, fossil depletion, freshwater consumption, and freshwater ecotoxicity). Sensitivity analysis indicates that even one reuse cycle for wine bottles offers environmental benefit compared over single-use.</div><div>It is noteworthy that other studies, which also assess reusable beverage packaging, have reported smaller break-even points for the transport distances. This distinction arises from the study's exclusive focus on glass bottles, which dominate the wine market. In conclusion, a reusable wine bottle system holds the potential would significantly decrease the environmental footprint of wine consumption.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"25 ","pages":"Article 100914"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790825000370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bottle production constitutes up to 70% of the greenhouse gas emissions of wine consumption. However, a reuse system comes along with additional environmental burdens, namely via the impact of cleaning processes and increased transport distances for the return of packaging. Hence, the objective of this study is to assess the potential environmental implications associated with both reuse and single-use for wine bottles, by means of life cycle assessment (LCA).
Under the assumption based on wine consumption in Germany, the reusable bottle exhibits a reduced environmental impact in four out of five considered impact categories (climate change, fossil depletion, freshwater consumption, and freshwater ecotoxicity). Sensitivity analysis indicates that even one reuse cycle for wine bottles offers environmental benefit compared over single-use.
It is noteworthy that other studies, which also assess reusable beverage packaging, have reported smaller break-even points for the transport distances. This distinction arises from the study's exclusive focus on glass bottles, which dominate the wine market. In conclusion, a reusable wine bottle system holds the potential would significantly decrease the environmental footprint of wine consumption.