Hanli Zhao , Yu Wang , Wanglong Lu , Zili Yi , Jun Liu , Minglun Gong
{"title":"Real-time dual-eye collaborative eyeblink detection with contrastive learning","authors":"Hanli Zhao , Yu Wang , Wanglong Lu , Zili Yi , Jun Liu , Minglun Gong","doi":"10.1016/j.patcog.2025.111440","DOIUrl":null,"url":null,"abstract":"<div><div>Real-time detection of eyeblinks in uncontrolled settings is crucial for applications such as driver fatigue monitoring, face spoofing prevention, and emotion analysis. This task, however, is significantly challenged by variations in facial poses, motion blur, and inconsistent lighting conditions, which frequently lead traditional facial landmark analysis tools to perform poorly, especially in low-light and dynamic environments. often lead to imprecise localization of key regions of interest, undermining the effectiveness of subsequent blink detection. To address these issues, we have developed a novel real-time dual-eye collaborative eyeblink detection method that incorporates contrastive learning. Our approach includes a consistent eye feature embedding technique that minimizes the impact of adverse lighting and extraneous noise during feature extraction. Through contrastive learning, we align feature embeddings of coarsely captured, low-light eye patches with those from finely detailed, well-lit patches. Furthermore, to enhance eyeblink detection and reduce false identifications of eye regions, we exploit the natural synchrony in blink patterns between the left and right eyes. We introduce a dual-eye collaborative spatio-temporal attention mechanism that captures both the inter-eye correlations and the temporal dynamics across sequences. Our collaborative learning approach maximizes the inherent synchrony and cooperation between the two eyes, significantly improving detection accuracy. Extensive experiments on three datasets and their low-light variants demonstrate that our method operates in real-time, adjusts effectively to varying lighting conditions, and performs robustly in untrimmed video scenarios.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"162 ","pages":"Article 111440"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325001001","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time detection of eyeblinks in uncontrolled settings is crucial for applications such as driver fatigue monitoring, face spoofing prevention, and emotion analysis. This task, however, is significantly challenged by variations in facial poses, motion blur, and inconsistent lighting conditions, which frequently lead traditional facial landmark analysis tools to perform poorly, especially in low-light and dynamic environments. often lead to imprecise localization of key regions of interest, undermining the effectiveness of subsequent blink detection. To address these issues, we have developed a novel real-time dual-eye collaborative eyeblink detection method that incorporates contrastive learning. Our approach includes a consistent eye feature embedding technique that minimizes the impact of adverse lighting and extraneous noise during feature extraction. Through contrastive learning, we align feature embeddings of coarsely captured, low-light eye patches with those from finely detailed, well-lit patches. Furthermore, to enhance eyeblink detection and reduce false identifications of eye regions, we exploit the natural synchrony in blink patterns between the left and right eyes. We introduce a dual-eye collaborative spatio-temporal attention mechanism that captures both the inter-eye correlations and the temporal dynamics across sequences. Our collaborative learning approach maximizes the inherent synchrony and cooperation between the two eyes, significantly improving detection accuracy. Extensive experiments on three datasets and their low-light variants demonstrate that our method operates in real-time, adjusts effectively to varying lighting conditions, and performs robustly in untrimmed video scenarios.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.