MSAN: Multiscale self-attention network for pansharpening

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2025-02-13 DOI:10.1016/j.patcog.2025.111441
Hangyuan Lu , Yong Yang , Shuying Huang , Rixian Liu , Huimin Guo
{"title":"MSAN: Multiscale self-attention network for pansharpening","authors":"Hangyuan Lu ,&nbsp;Yong Yang ,&nbsp;Shuying Huang ,&nbsp;Rixian Liu ,&nbsp;Huimin Guo","doi":"10.1016/j.patcog.2025.111441","DOIUrl":null,"url":null,"abstract":"<div><div>Effective extraction of spectral–spatial features from multispectral (MS) and panchromatic (PAN) images is critical for high-quality pansharpening. However, existing deep learning methods often overlook local misalignment and struggle to integrate local and long-range features effectively, resulting in spectral and spatial distortions. To address these challenges, this paper proposes a refined detail injection model that adaptively learns injection coefficients using long-range features. Building upon this model, a multiscale self-attention network (MSAN) is proposed, consisting of a feature extraction branch and a self-attention mechanism branch. In the former branch, a two-stage multiscale convolution network is designed to fully extract detail features with multiple receptive fields. In the latter branch, a streamlined Swin Transformer (SST) is proposed to efficiently generate multiscale self-attention maps by learning the correlation between local and long-range features. To better preserve spectral–spatial information, a revised Swin Transformer block is proposed by incorporating spectral and spatial attention within the block. The obtained self-attention maps from SST serve as the injection coefficients to refine the extracted details, which are then injected into the upsampled MS image to produce the final fused image. Experimental validation demonstrates the superiority of MSAN over traditional and state-of-the-art methods, with competitive efficiency. The code of this work will be released on GitHub once the paper is accepted.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"162 ","pages":"Article 111441"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325001013","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Effective extraction of spectral–spatial features from multispectral (MS) and panchromatic (PAN) images is critical for high-quality pansharpening. However, existing deep learning methods often overlook local misalignment and struggle to integrate local and long-range features effectively, resulting in spectral and spatial distortions. To address these challenges, this paper proposes a refined detail injection model that adaptively learns injection coefficients using long-range features. Building upon this model, a multiscale self-attention network (MSAN) is proposed, consisting of a feature extraction branch and a self-attention mechanism branch. In the former branch, a two-stage multiscale convolution network is designed to fully extract detail features with multiple receptive fields. In the latter branch, a streamlined Swin Transformer (SST) is proposed to efficiently generate multiscale self-attention maps by learning the correlation between local and long-range features. To better preserve spectral–spatial information, a revised Swin Transformer block is proposed by incorporating spectral and spatial attention within the block. The obtained self-attention maps from SST serve as the injection coefficients to refine the extracted details, which are then injected into the upsampled MS image to produce the final fused image. Experimental validation demonstrates the superiority of MSAN over traditional and state-of-the-art methods, with competitive efficiency. The code of this work will be released on GitHub once the paper is accepted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
MDFCL: Multimodal data fusion-based graph contrastive learning framework for molecular property prediction FedPnP: Personalized graph-structured federated learning An efficient and effective pore matching method using ResCNN descriptor and local outliers Real-time dual-eye collaborative eyeblink detection with contrastive learning MSAN: Multiscale self-attention network for pansharpening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1