Qinghua Lin , Zuoyong Li , Kun Zeng , Jie Wen , Yuting Jiang , Jian Chen
{"title":"WtNGAN: Unpaired image translation from white light images to narrow-band images","authors":"Qinghua Lin , Zuoyong Li , Kun Zeng , Jie Wen , Yuting Jiang , Jian Chen","doi":"10.1016/j.patcog.2025.111431","DOIUrl":null,"url":null,"abstract":"<div><div>As one of the most dangerous cancers, gastric cancer poses a serious threat to human health. Currently, gastroscopy remains the preferred method for gastric cancer diagnosis. In gastroscopy, white light and narrow-band light image are two necessary modalities providing deep learning-based multimodal-assisted diagnosis possibilities. However, there is no paired dataset of white-light images (WLIs) and narrow-band images (NBIs), which hinders the development of these methods. To address this problem, we propose an unpaired image-to-image translation network for translating WLI to NBI. Specifically, we first design a generative adversarial network based on Vision Mamba. The generator enhances the detailed representation capability by establishing long-range dependencies and generating images similar to authentic images. Then, we propose a structural consistency constraint to preserve the original tissue structure of the generated images. We also utilize contrastive learning (CL) to maximize the information interaction between the source and target domains. We conduct extensive experiments on a private gastroscopy dataset for translation between WLIs and NBIs. To verify the effectiveness of the proposed method, we also perform the translation between T1 and T2 magnetic resonance images (MRIs) on the BraTS 2021 dataset. The experimental results demonstrate that the proposed method outperforms state-of-the-art methods.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"162 ","pages":"Article 111431"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325000913","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
As one of the most dangerous cancers, gastric cancer poses a serious threat to human health. Currently, gastroscopy remains the preferred method for gastric cancer diagnosis. In gastroscopy, white light and narrow-band light image are two necessary modalities providing deep learning-based multimodal-assisted diagnosis possibilities. However, there is no paired dataset of white-light images (WLIs) and narrow-band images (NBIs), which hinders the development of these methods. To address this problem, we propose an unpaired image-to-image translation network for translating WLI to NBI. Specifically, we first design a generative adversarial network based on Vision Mamba. The generator enhances the detailed representation capability by establishing long-range dependencies and generating images similar to authentic images. Then, we propose a structural consistency constraint to preserve the original tissue structure of the generated images. We also utilize contrastive learning (CL) to maximize the information interaction between the source and target domains. We conduct extensive experiments on a private gastroscopy dataset for translation between WLIs and NBIs. To verify the effectiveness of the proposed method, we also perform the translation between T1 and T2 magnetic resonance images (MRIs) on the BraTS 2021 dataset. The experimental results demonstrate that the proposed method outperforms state-of-the-art methods.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.