Zhen Li , Zhiwen Wu , Qing Long , Wudi Feng , Shuhua Liu , Xianze Yuan
{"title":"Preparation of municipal waste incineration fly ash artificial aggregate using CO₂ curing and its properties","authors":"Zhen Li , Zhiwen Wu , Qing Long , Wudi Feng , Shuhua Liu , Xianze Yuan","doi":"10.1016/j.jcou.2025.103042","DOIUrl":null,"url":null,"abstract":"<div><div>With the acceleration of urbanization and the continuous growth of population, the treatment of municipal solid waste incineration fly ash (MSWI-FA), a product of municipal solid waste incineration, has become an important issue. In this study, MSWI-FA, fly ash, and cement were used as raw materials to prepare artificial aggregates by CO₂ curing technology and to study their properties. The results showed that the best performance of aggregates was obtained under CO₂ curing conditions with a water-solid ratio of 0.26, a cement content of 30 %, and fly ash content of 15 %. The formulation of raw materials affects the strength of aggregates. The appropriate amount of cement and fly ash can improve the strength, while excessive cement and fly ash can hinder the absorption and fixation of carbon dioxide, affect the carbonation reaction and strengthening effect, and even lead to the deterioration of performance. The CO₂ curing increased the average compressive strength of the artificial aggregate at the age of 28 days by approximately 80 %, and reduced water absorption, and improved durability. The produced aggregates have good stabilization ability for heavy metals, and the leaching concentration is lower than the national standard, which can be used safely in the construction field. In this study, MSWI-FA waste was successfully converted into artificial aggregates for use in construction using CO₂ curing technology, achieving the dual goals of waste recycling and carbon sequestration.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"93 ","pages":"Article 103042"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982025000265","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the acceleration of urbanization and the continuous growth of population, the treatment of municipal solid waste incineration fly ash (MSWI-FA), a product of municipal solid waste incineration, has become an important issue. In this study, MSWI-FA, fly ash, and cement were used as raw materials to prepare artificial aggregates by CO₂ curing technology and to study their properties. The results showed that the best performance of aggregates was obtained under CO₂ curing conditions with a water-solid ratio of 0.26, a cement content of 30 %, and fly ash content of 15 %. The formulation of raw materials affects the strength of aggregates. The appropriate amount of cement and fly ash can improve the strength, while excessive cement and fly ash can hinder the absorption and fixation of carbon dioxide, affect the carbonation reaction and strengthening effect, and even lead to the deterioration of performance. The CO₂ curing increased the average compressive strength of the artificial aggregate at the age of 28 days by approximately 80 %, and reduced water absorption, and improved durability. The produced aggregates have good stabilization ability for heavy metals, and the leaching concentration is lower than the national standard, which can be used safely in the construction field. In this study, MSWI-FA waste was successfully converted into artificial aggregates for use in construction using CO₂ curing technology, achieving the dual goals of waste recycling and carbon sequestration.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.