Guoyu Zuo, Shuaifeng Dong, Jiyong Zhou, Shuangyue Yu, Min Zhao
{"title":"Motion control strategy for robotic arm using cascaded feature-enhancement ElasticNet broad learning system","authors":"Guoyu Zuo, Shuaifeng Dong, Jiyong Zhou, Shuangyue Yu, Min Zhao","doi":"10.1016/j.conengprac.2025.106278","DOIUrl":null,"url":null,"abstract":"<div><div>Learning-based control strategies can significantly streamline the process of modeling robotic arms and adjusting control parameters, making them widely used in robotic arm motion control. However, the existing learning-based motion control strategies suffer from insufficient feature extraction, resulting in limited prediction accuracy. To address this problem, this paper proposes a robotic arm motion control strategy based on a cascaded feature-enhanced elastic-net broad learning system (CFE-EN-BLS), which improves the trajectory tracking accuracy of robotic arms. Firstly, a motion control strategy of the cascaded feature-enhanced broad learning system (CFE-BLS) is constructed to fully extract data features to improve joint position-tracking accuracy. Secondly, combined with elastic-net regression, a motion control strategy for the robotic arm based on CFE-EN-BLS is designed to reduce feature redundancy. Finally, the learning parameters of the proposed control strategy are constrained by incorporating Lyapunov theory to bolster the convergence of the control strategy. Simulation and experimental results show that the proposed control strategy can effectively extract data features and achieve high-precision trajectory tracking control of the robotic arm. The position tracking mean-squared-error (MSE) and root-mean-squared-error (RMSE) are 0.00174<span><math><mrow><mi>r</mi><mi>a</mi><mi>d</mi></mrow></math></span> and 0.04167<span><math><mrow><mi>r</mi><mi>a</mi><mi>d</mi></mrow></math></span>, respectively, which represent reductions of 74.71% and 49.76% compared to the existing method.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"158 ","pages":"Article 106278"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125000413","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Learning-based control strategies can significantly streamline the process of modeling robotic arms and adjusting control parameters, making them widely used in robotic arm motion control. However, the existing learning-based motion control strategies suffer from insufficient feature extraction, resulting in limited prediction accuracy. To address this problem, this paper proposes a robotic arm motion control strategy based on a cascaded feature-enhanced elastic-net broad learning system (CFE-EN-BLS), which improves the trajectory tracking accuracy of robotic arms. Firstly, a motion control strategy of the cascaded feature-enhanced broad learning system (CFE-BLS) is constructed to fully extract data features to improve joint position-tracking accuracy. Secondly, combined with elastic-net regression, a motion control strategy for the robotic arm based on CFE-EN-BLS is designed to reduce feature redundancy. Finally, the learning parameters of the proposed control strategy are constrained by incorporating Lyapunov theory to bolster the convergence of the control strategy. Simulation and experimental results show that the proposed control strategy can effectively extract data features and achieve high-precision trajectory tracking control of the robotic arm. The position tracking mean-squared-error (MSE) and root-mean-squared-error (RMSE) are 0.00174 and 0.04167, respectively, which represent reductions of 74.71% and 49.76% compared to the existing method.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.