{"title":"Effects of electric field on microbial metabolism in petroleum-polluted soil: Insights from microbial function and carbon utilization characteristics","authors":"Ruijuan Fan , Mengke Zhu , Bin Yang , Xingfu Yan","doi":"10.1016/j.bej.2025.109665","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated how the electric field enhances microbial metabolism during bio-electrokinetic (BIO-EK) remediation and identified factors hindering sustainable pollutant degradation. The results showed that the degradation rate of total organic carbon (TOC) was higher in BIO-EK than in bioremediation and electrokinetic processes, by up to 2.22 and 1.54 times, respectively. Similarly, the degradation efficiency of total petroleum hydrocarbons (TPH) in BIO-EK was 1.58 and 1.81 times higher than in the bioremediation and electrokinetic groups. In BIO-EK, microbial biomass carbon (MBC) content was up to 6.13 times higher than in the bioremediation group, and dissolved organic carbon (DOC) content was 2.30 and 1.26 times higher than in the bioremediation and electrokinetic groups, respectively. This indicates that the electric field promoted the conversion of TOC to DOC, which was assimilated by microorganisms to generate MBC. The analysis of the structure and functional genes of soil microbial communities revealed that the electric field accelerated the degradation of key petroleum hydrocarbon components and the soil carbon cycle. However, degradation rates varied, and MBC and DOC levels declined in later stages, indicating discontinuous pollutant degradation. The analysis of the ratio of organic carbon derived from petroleum and soil sources (<sup>12</sup>Cp/<sup>12</sup>Cs) revealed intermittent use of petroleum-derived carbon, potentially limiting the sustainable degradation of pollutants. The research results provide insights for improving BIO-EK remediation efficiency.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"217 ","pages":"Article 109665"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X25000385","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated how the electric field enhances microbial metabolism during bio-electrokinetic (BIO-EK) remediation and identified factors hindering sustainable pollutant degradation. The results showed that the degradation rate of total organic carbon (TOC) was higher in BIO-EK than in bioremediation and electrokinetic processes, by up to 2.22 and 1.54 times, respectively. Similarly, the degradation efficiency of total petroleum hydrocarbons (TPH) in BIO-EK was 1.58 and 1.81 times higher than in the bioremediation and electrokinetic groups. In BIO-EK, microbial biomass carbon (MBC) content was up to 6.13 times higher than in the bioremediation group, and dissolved organic carbon (DOC) content was 2.30 and 1.26 times higher than in the bioremediation and electrokinetic groups, respectively. This indicates that the electric field promoted the conversion of TOC to DOC, which was assimilated by microorganisms to generate MBC. The analysis of the structure and functional genes of soil microbial communities revealed that the electric field accelerated the degradation of key petroleum hydrocarbon components and the soil carbon cycle. However, degradation rates varied, and MBC and DOC levels declined in later stages, indicating discontinuous pollutant degradation. The analysis of the ratio of organic carbon derived from petroleum and soil sources (12Cp/12Cs) revealed intermittent use of petroleum-derived carbon, potentially limiting the sustainable degradation of pollutants. The research results provide insights for improving BIO-EK remediation efficiency.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.