Disturbance Observer-Parameterized Control Barrier Function With Adaptive Safety Bounds

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2025-01-27 DOI:10.1109/LCSYS.2025.3535379
Ziqi Yang;Lihua Xie
{"title":"Disturbance Observer-Parameterized Control Barrier Function With Adaptive Safety Bounds","authors":"Ziqi Yang;Lihua Xie","doi":"10.1109/LCSYS.2025.3535379","DOIUrl":null,"url":null,"abstract":"This letter presents a nonlinear disturbance observer-parameterized control barrier function (DOp-CBF) designed for a robust safety control system under external disturbances. This framework emphasizes that the safety bounds are relevant to the disturbances, acknowledging the critical impact of disturbances on system safety. This letter incorporates a disturbance observer (DO) as an adaptive mechanism of the safety bounds design. Instead of considering the worst-case scenario, the safety bounds are dynamically adjusted using DO. The forward invariance of the proposed method regardless of the observer error is ensured, and the corresponding optimal control formulation is presented. The performance of the proposed method is demonstrated through simulations of a cruise control problem under varying road grades. The influence of road grade on the safe distance between vehicles is analyzed and managed using a DO. The results demonstrate the advantages of this approach in maintaining safety and improving system performance under disturbances.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3380-3385"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10855486/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents a nonlinear disturbance observer-parameterized control barrier function (DOp-CBF) designed for a robust safety control system under external disturbances. This framework emphasizes that the safety bounds are relevant to the disturbances, acknowledging the critical impact of disturbances on system safety. This letter incorporates a disturbance observer (DO) as an adaptive mechanism of the safety bounds design. Instead of considering the worst-case scenario, the safety bounds are dynamically adjusted using DO. The forward invariance of the proposed method regardless of the observer error is ensured, and the corresponding optimal control formulation is presented. The performance of the proposed method is demonstrated through simulations of a cruise control problem under varying road grades. The influence of road grade on the safe distance between vehicles is analyzed and managed using a DO. The results demonstrate the advantages of this approach in maintaining safety and improving system performance under disturbances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Decentralized Fault Diagnosis for Constant-Time Automata Data-Driven Disturbance Decoupling Problem Strategy Diffusion and Conformity in Evolutionary Dynamics on General Networks Asynchronous Event-Triggered H∞ Control for Continuous-Time Markov Jump Systems Disturbance Observer-Parameterized Control Barrier Function With Adaptive Safety Bounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1