Zhirong Xin, Junpeng Cao, Wen-Li Yang, Yupeng Wang
{"title":"Exact physical quantities of the XYZ spin chain in the thermodynamic limit","authors":"Zhirong Xin, Junpeng Cao, Wen-Li Yang, Yupeng Wang","doi":"10.1007/JHEP02(2025)086","DOIUrl":null,"url":null,"abstract":"<p>The thermodynamic limits of the XYZ spin chain with periodic or twisted boundary conditions are studied. By using the technique of characterizing the eigenvalue of the transfer matrix by the <i>T − Q</i> relation and by the zeros of the associated polynomial, we obtain the constraints of the Bethe roots and the zeros for the eigenvalues. With the help of structure of Bethe roots, we obtain the distribution patterns of zeros. Based on them, the physical quantities such as the surface energy and excitation energy are calculated. We find that both of them depend on the parity of sites number due to the topological long-range Neel order on the Mobius manifold in the spin space. We also check our results with those obtaining by the density matrix renormalization group. The method provided in this paper can be applied to study the thermodynamic properties at the thermal equilibrium state with finite temperature.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)086.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP02(2025)086","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The thermodynamic limits of the XYZ spin chain with periodic or twisted boundary conditions are studied. By using the technique of characterizing the eigenvalue of the transfer matrix by the T − Q relation and by the zeros of the associated polynomial, we obtain the constraints of the Bethe roots and the zeros for the eigenvalues. With the help of structure of Bethe roots, we obtain the distribution patterns of zeros. Based on them, the physical quantities such as the surface energy and excitation energy are calculated. We find that both of them depend on the parity of sites number due to the topological long-range Neel order on the Mobius manifold in the spin space. We also check our results with those obtaining by the density matrix renormalization group. The method provided in this paper can be applied to study the thermodynamic properties at the thermal equilibrium state with finite temperature.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).