{"title":"Cosmic superstrings, metastable strings and ultralight primordial black holes: from NANOGrav to LIGO and beyond","authors":"Satyabrata Datta, Rome Samanta","doi":"10.1007/JHEP02(2025)095","DOIUrl":null,"url":null,"abstract":"<p>While topologically stable cosmic strings are disfavoured by the recent observation of nHz stochastic gravitational waves (GW) by Pulsar Timing Arrays (PTA), e.g., NANOGrav, cosmic metastable strings and superstrings are not. However, because the gravitational waves from all classes of strings generally span a wide range of frequencies, they contradict LIGO’s non-observation of stochastic gravitational waves at the <i>f</i> ~ 25 Hz band for a substantial string-parameter space favoured by the PTA data. Suppose ultralight primordial black holes (<i>M</i><sub>BH</sub> < 10<sup>9</sup> g) existed in the early universe. In this case, they reduce the amplitude of the GWs at higher frequencies by providing an early matter-dominated phase, alleviating the tension between LIGO observation and PTA data. We show that the recent PTA data complemented by future LIGO-Virgo-KAGRA (LVK) runs plus detectors such as LISA and ET would be able to dapple the properties and further search strategies of such ultralight primordial black holes which are otherwise fairly elusive as they evaporate in the early universe by Hawking radiation.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)095.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP02(2025)095","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
While topologically stable cosmic strings are disfavoured by the recent observation of nHz stochastic gravitational waves (GW) by Pulsar Timing Arrays (PTA), e.g., NANOGrav, cosmic metastable strings and superstrings are not. However, because the gravitational waves from all classes of strings generally span a wide range of frequencies, they contradict LIGO’s non-observation of stochastic gravitational waves at the f ~ 25 Hz band for a substantial string-parameter space favoured by the PTA data. Suppose ultralight primordial black holes (MBH < 109 g) existed in the early universe. In this case, they reduce the amplitude of the GWs at higher frequencies by providing an early matter-dominated phase, alleviating the tension between LIGO observation and PTA data. We show that the recent PTA data complemented by future LIGO-Virgo-KAGRA (LVK) runs plus detectors such as LISA and ET would be able to dapple the properties and further search strategies of such ultralight primordial black holes which are otherwise fairly elusive as they evaporate in the early universe by Hawking radiation.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).