Amino Acid Metabolism and Immune Dysfunction in Urea Cycle Disorders: T and B Cell Perspectives

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Inherited Metabolic Disease Pub Date : 2025-02-16 DOI:10.1002/jimd.70009
Betul Gemici Karaaslan, Ayca Kiykim, Nihan Burtecene, Meltem Gokden, Mehmet Serif Cansever, Duhan Hopurcuoglu, Gökçe Nuran Cengiz, Birol Topcu, Tanyel Zubarioğlu, Ertugrul Kiykim, Haluk Cokuğras, Ayse Cigdem Aktuglu Zeybek
{"title":"Amino Acid Metabolism and Immune Dysfunction in Urea Cycle Disorders: T and B Cell Perspectives","authors":"Betul Gemici Karaaslan,&nbsp;Ayca Kiykim,&nbsp;Nihan Burtecene,&nbsp;Meltem Gokden,&nbsp;Mehmet Serif Cansever,&nbsp;Duhan Hopurcuoglu,&nbsp;Gökçe Nuran Cengiz,&nbsp;Birol Topcu,&nbsp;Tanyel Zubarioğlu,&nbsp;Ertugrul Kiykim,&nbsp;Haluk Cokuğras,&nbsp;Ayse Cigdem Aktuglu Zeybek","doi":"10.1002/jimd.70009","DOIUrl":null,"url":null,"abstract":"<p>Urea cycle disorders (UCDs) are a group of genetic metabolic conditions characterized by enzyme deficiencies responsible for detoxifying ammonia. Hyperammonemia, the accumulation of intermediate metabolites, and a deficiency of essential amino acids—due to a protein-restrictive diet and the use of ammonia scavengers—can increase the risk of infections, particularly during metabolic crises. While the underlying mechanisms of immune suppression are still being fully elucidated, hyperammonemia may impair the function of immune cells, particularly T cells and macrophages, inhibiting the proliferation of T cells and cytokine production. Arginine, which is essential for T-cell activation and function, may also be limited in these patients, and its depletion can increase their vulnerability to infections. Twenty-four UCD patients and 31 healthy donors were recruited for the study. Peripheral lymphocyte subset analysis, intracellular protein and cytokine staining, and proliferation assays were performed by flow cytometry. Amino acid levels were measured using the HPLC method. The UCD patients exhibited low lymphocyte-proliferation capacity in both proximal and distal defects in response to phytohaemagglutinin (PHA) and anti-CD2, anti-CD3, and anti-CD28 (CD-mix), which was lower than healthy controls. Proximal-UCD patients exhibited a significantly higher response for IFN-γ compared to both distal-UCD patients and healthy controls. The different amino acids in the culture medium were changed significantly in the groups. This study highlights significant immune dysfunctions in UCD patients, particularly impaired T-cell proliferation and altered amino acid metabolism. Proximal UCD patients exhibited a higher IFN-γ response, indicating a potential for hyperinflammation. Despite this, infection rates did not significantly differ between proximal UCD and distal UCD patients, although distal UCD patients had higher hospitalization rates. Amino acid analysis revealed distinct metabolic disruptions, emphasizing the complex interplay between metabolism and immune function. These findings suggest that UCDs cause profound immune alterations, necessitating further research to develop targeted therapeutic strategies.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":"48 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jimd.70009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inherited Metabolic Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jimd.70009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Urea cycle disorders (UCDs) are a group of genetic metabolic conditions characterized by enzyme deficiencies responsible for detoxifying ammonia. Hyperammonemia, the accumulation of intermediate metabolites, and a deficiency of essential amino acids—due to a protein-restrictive diet and the use of ammonia scavengers—can increase the risk of infections, particularly during metabolic crises. While the underlying mechanisms of immune suppression are still being fully elucidated, hyperammonemia may impair the function of immune cells, particularly T cells and macrophages, inhibiting the proliferation of T cells and cytokine production. Arginine, which is essential for T-cell activation and function, may also be limited in these patients, and its depletion can increase their vulnerability to infections. Twenty-four UCD patients and 31 healthy donors were recruited for the study. Peripheral lymphocyte subset analysis, intracellular protein and cytokine staining, and proliferation assays were performed by flow cytometry. Amino acid levels were measured using the HPLC method. The UCD patients exhibited low lymphocyte-proliferation capacity in both proximal and distal defects in response to phytohaemagglutinin (PHA) and anti-CD2, anti-CD3, and anti-CD28 (CD-mix), which was lower than healthy controls. Proximal-UCD patients exhibited a significantly higher response for IFN-γ compared to both distal-UCD patients and healthy controls. The different amino acids in the culture medium were changed significantly in the groups. This study highlights significant immune dysfunctions in UCD patients, particularly impaired T-cell proliferation and altered amino acid metabolism. Proximal UCD patients exhibited a higher IFN-γ response, indicating a potential for hyperinflammation. Despite this, infection rates did not significantly differ between proximal UCD and distal UCD patients, although distal UCD patients had higher hospitalization rates. Amino acid analysis revealed distinct metabolic disruptions, emphasizing the complex interplay between metabolism and immune function. These findings suggest that UCDs cause profound immune alterations, necessitating further research to develop targeted therapeutic strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Inherited Metabolic Disease
Journal of Inherited Metabolic Disease 医学-内分泌学与代谢
CiteScore
9.50
自引率
7.10%
发文量
117
审稿时长
4-8 weeks
期刊介绍: The Journal of Inherited Metabolic Disease (JIMD) is the official journal of the Society for the Study of Inborn Errors of Metabolism (SSIEM). By enhancing communication between workers in the field throughout the world, the JIMD aims to improve the management and understanding of inherited metabolic disorders. It publishes results of original research and new or important observations pertaining to any aspect of inherited metabolic disease in humans and higher animals. This includes clinical (medical, dental and veterinary), biochemical, genetic (including cytogenetic, molecular and population genetic), experimental (including cell biological), methodological, theoretical, epidemiological, ethical and counselling aspects. The JIMD also reviews important new developments or controversial issues relating to metabolic disorders and publishes reviews and short reports arising from the Society''s annual symposia. A distinction is made between peer-reviewed scientific material that is selected because of its significance for other professionals in the field and non-peer- reviewed material that aims to be important, controversial, interesting or entertaining (“Extras”).
期刊最新文献
Amino Acid Metabolism and Immune Dysfunction in Urea Cycle Disorders: T and B Cell Perspectives Emergency Management of Intoxication-Type Inherited Metabolic Disorders Reshaping the Treatment Landscape of a Galactose Metabolism Disorder C1GALT1C1-Associated Mosaic Disorder of Glycosylation in a Female Human Milk Feeding in Inherited Metabolic Disorders: A Systematic Review of Growth, Metabolic Control, and Neurodevelopment Outcomes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1