Wireless mmWave Communication in 5G Network Slicing With Routing Model Based on IoT and Deep Learning Model

IF 2.5 4区 计算机科学 Q3 TELECOMMUNICATIONS Transactions on Emerging Telecommunications Technologies Pub Date : 2025-02-14 DOI:10.1002/ett.70071
R. Suganya, L. R. Sujithra, Ramesh Kumar Ayyasamy, P. Chinnasamy
{"title":"Wireless mmWave Communication in 5G Network Slicing With Routing Model Based on IoT and Deep Learning Model","authors":"R. Suganya,&nbsp;L. R. Sujithra,&nbsp;Ramesh Kumar Ayyasamy,&nbsp;P. Chinnasamy","doi":"10.1002/ett.70071","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In fifth-generation (5G) radio access networks (RANs), network slicing makes it possible to serve large amounts of network traffic while meeting a variety of demanding quality of service (QoS) standards. Higher path loss and sparser multipath components (MPCs) are the primary distinctions, which lead to more notable time-varying characteristics in mmWave channels. Using statistical models, such as slope-intercept methods for path loss for delay spread and angular spread, is challenging to characterize the time-varying properties of mmWave channels. Therefore, adopting mmWave communication systems requires highly accurate channel modeling and prediction. This research proposes a novel technique in wireless mmWave communication 5G network slicing and routing protocol using IoT (Internet of things) and deep learning techniques. An adaptive software-defined reinforcement recurrent autoencoder model (ASDRRAE) slices the mmWave communication network. A dilated clustering-based adversarial backpropagation model (DCAB) then performs network routing. The experimental analysis evaluates throughput, packet delivery ratio, latency, training accuracy, and precision. The suggested hybrid model has a 97.21% overall recognition rate, illustrating that the suggested strategy is aptly applicable. A 10-fold stratified cross-validation is employed to evaluate the suitability of the proposed method.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70071","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In fifth-generation (5G) radio access networks (RANs), network slicing makes it possible to serve large amounts of network traffic while meeting a variety of demanding quality of service (QoS) standards. Higher path loss and sparser multipath components (MPCs) are the primary distinctions, which lead to more notable time-varying characteristics in mmWave channels. Using statistical models, such as slope-intercept methods for path loss for delay spread and angular spread, is challenging to characterize the time-varying properties of mmWave channels. Therefore, adopting mmWave communication systems requires highly accurate channel modeling and prediction. This research proposes a novel technique in wireless mmWave communication 5G network slicing and routing protocol using IoT (Internet of things) and deep learning techniques. An adaptive software-defined reinforcement recurrent autoencoder model (ASDRRAE) slices the mmWave communication network. A dilated clustering-based adversarial backpropagation model (DCAB) then performs network routing. The experimental analysis evaluates throughput, packet delivery ratio, latency, training accuracy, and precision. The suggested hybrid model has a 97.21% overall recognition rate, illustrating that the suggested strategy is aptly applicable. A 10-fold stratified cross-validation is employed to evaluate the suitability of the proposed method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
13.90%
发文量
249
期刊介绍: ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims: - to attract cutting-edge publications from leading researchers and research groups around the world - to become a highly cited source of timely research findings in emerging fields of telecommunications - to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish - to become the leading journal for publishing the latest developments in telecommunications
期刊最新文献
Adaptive Entropy Lightweight Encryption Estimate for Software Defined Network to Mitigate Data Security Threats in Smart Cities An Optimized Dual Generative Hyperbolic Graph Adversarial Network With Multi-Factor Random Permutation Pseudo Algorithm Based Encryption for Secured Industrial Healthcare Data Transferring Lattice Homomorphic Assisted Privacy Preserving Electronic Health Records Data Transmission in Internet of Medical Things Using Blockchain Wireless mmWave Communication in 5G Network Slicing With Routing Model Based on IoT and Deep Learning Model Towards Secure and Efficient Data Aggregation in Blockchain-Driven IoT Environments: A Comprehensive and Systematic Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1