R. Suganya, L. R. Sujithra, Ramesh Kumar Ayyasamy, P. Chinnasamy
{"title":"Wireless mmWave Communication in 5G Network Slicing With Routing Model Based on IoT and Deep Learning Model","authors":"R. Suganya, L. R. Sujithra, Ramesh Kumar Ayyasamy, P. Chinnasamy","doi":"10.1002/ett.70071","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In fifth-generation (5G) radio access networks (RANs), network slicing makes it possible to serve large amounts of network traffic while meeting a variety of demanding quality of service (QoS) standards. Higher path loss and sparser multipath components (MPCs) are the primary distinctions, which lead to more notable time-varying characteristics in mmWave channels. Using statistical models, such as slope-intercept methods for path loss for delay spread and angular spread, is challenging to characterize the time-varying properties of mmWave channels. Therefore, adopting mmWave communication systems requires highly accurate channel modeling and prediction. This research proposes a novel technique in wireless mmWave communication 5G network slicing and routing protocol using IoT (Internet of things) and deep learning techniques. An adaptive software-defined reinforcement recurrent autoencoder model (ASDRRAE) slices the mmWave communication network. A dilated clustering-based adversarial backpropagation model (DCAB) then performs network routing. The experimental analysis evaluates throughput, packet delivery ratio, latency, training accuracy, and precision. The suggested hybrid model has a 97.21% overall recognition rate, illustrating that the suggested strategy is aptly applicable. A 10-fold stratified cross-validation is employed to evaluate the suitability of the proposed method.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70071","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In fifth-generation (5G) radio access networks (RANs), network slicing makes it possible to serve large amounts of network traffic while meeting a variety of demanding quality of service (QoS) standards. Higher path loss and sparser multipath components (MPCs) are the primary distinctions, which lead to more notable time-varying characteristics in mmWave channels. Using statistical models, such as slope-intercept methods for path loss for delay spread and angular spread, is challenging to characterize the time-varying properties of mmWave channels. Therefore, adopting mmWave communication systems requires highly accurate channel modeling and prediction. This research proposes a novel technique in wireless mmWave communication 5G network slicing and routing protocol using IoT (Internet of things) and deep learning techniques. An adaptive software-defined reinforcement recurrent autoencoder model (ASDRRAE) slices the mmWave communication network. A dilated clustering-based adversarial backpropagation model (DCAB) then performs network routing. The experimental analysis evaluates throughput, packet delivery ratio, latency, training accuracy, and precision. The suggested hybrid model has a 97.21% overall recognition rate, illustrating that the suggested strategy is aptly applicable. A 10-fold stratified cross-validation is employed to evaluate the suitability of the proposed method.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications