{"title":"Adaptive Entropy Lightweight Encryption Estimate for Software Defined Network to Mitigate Data Security Threats in Smart Cities","authors":"Sunil Kumar Shah, Raghavendra Sharma, Neeraj Shukla","doi":"10.1002/ett.70067","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Traditional networking environments typically configure encryption policies statically on individual devices, but a fast and space-efficient system for data security is needed. Hence, a novel Adaptive Entropy Lightweight Encryption Estimate for the Software Define Network is introduced to mitigate data security threats. Large-scale SDN deployments necessitate complex encryption policies, with lightweight algorithms posing limitations due to their lack of high avalanche effects. Thus, a novel Adaptive Entropy Lightweight Encryption Algorithm is proposed that uses Extended Tiny Encryption Algorithm (XTEA) for efficient encryption and decryption and Adaptive Shannon Collision Entropy Estimation to improve the avalanche effect. Moreover, the Conjugate Gradient Trust Region Method within SDN allows controllers to adjust XTEA encryption parameters. Further, maintaining a linear relationship between encoding/decoding time and data size is crucial for efficient resource allocation and processing time estimation in lightweight encryption algorithms. Hence, a novel Shift Register Hill Climbing Security is introduced, which uses Shifted Feedback Register (SFR) to generate pseudo-random bits, and Beta-Adapt Hill Climbing algorithm (BAHC) to dynamically adjust SFR parameters. The findings indicate that the suggested model has less execution time, delay, packet loss, and high throughput, compared to other existing models.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70067","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional networking environments typically configure encryption policies statically on individual devices, but a fast and space-efficient system for data security is needed. Hence, a novel Adaptive Entropy Lightweight Encryption Estimate for the Software Define Network is introduced to mitigate data security threats. Large-scale SDN deployments necessitate complex encryption policies, with lightweight algorithms posing limitations due to their lack of high avalanche effects. Thus, a novel Adaptive Entropy Lightweight Encryption Algorithm is proposed that uses Extended Tiny Encryption Algorithm (XTEA) for efficient encryption and decryption and Adaptive Shannon Collision Entropy Estimation to improve the avalanche effect. Moreover, the Conjugate Gradient Trust Region Method within SDN allows controllers to adjust XTEA encryption parameters. Further, maintaining a linear relationship between encoding/decoding time and data size is crucial for efficient resource allocation and processing time estimation in lightweight encryption algorithms. Hence, a novel Shift Register Hill Climbing Security is introduced, which uses Shifted Feedback Register (SFR) to generate pseudo-random bits, and Beta-Adapt Hill Climbing algorithm (BAHC) to dynamically adjust SFR parameters. The findings indicate that the suggested model has less execution time, delay, packet loss, and high throughput, compared to other existing models.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications