“Ground truth” occurrence of Pink Spinel Anorthosite (PSA) as clasts in lunar meteorite Northwest Africa (NWA) 15500: Chemical evidence for a genetic relationship with lunar highlands Mg-suite and formation by magma–wallrock interactions
{"title":"“Ground truth” occurrence of Pink Spinel Anorthosite (PSA) as clasts in lunar meteorite Northwest Africa (NWA) 15500: Chemical evidence for a genetic relationship with lunar highlands Mg-suite and formation by magma–wallrock interactions","authors":"Daniel Sheikh, Alex M. Ruzicka, Melinda L. Hutson","doi":"10.1111/maps.14298","DOIUrl":null,"url":null,"abstract":"<p>Pink spinel anorthosite (PSA), a distinctive plagioclase and spinel-rich lithology (spinel >20%) observed on the lunar surface by the Moon Mineralogy Mapper (M<sup>3</sup>) imaging spectrometer, has sparked considerable interest in understanding magmatic processes on the Moon that cannot be explained by the well-established lunar magma ocean paradigm. Competing ideas on the PSA-forming mechanisms have invoked either (1) impact melting of troctolitic source rocks on the lunar surface or (2) magma–wallrock interactions between anorthositic crust and Mg-suite parental melts, but have been difficult to evaluate given the lack of ground truth samples. Here, we investigate the textures and mineral compositions of seven PSA clasts in lunar meteorite Northwest Africa (NWA) 15500, and the bulk trace element compositions of a PSA clast separate and NWA 15500 host lithologies A and B. Our findings suggest derivation of PSA from an incompatible-element-poor source and are consistent with PSA representing an Mg-suite lithology genetically related to pink spinel troctolites that reflects increased degrees of crustal assimilation during magma–wallrock interactions, and a sourcing of PSA far from the Procellarum KREEP Terrane. Excavation of PSA material was followed by multiple, subsequent localized impact events, resulting in the formation of Lithologies A and B.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 2","pages":"206-224"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14298","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Pink spinel anorthosite (PSA), a distinctive plagioclase and spinel-rich lithology (spinel >20%) observed on the lunar surface by the Moon Mineralogy Mapper (M3) imaging spectrometer, has sparked considerable interest in understanding magmatic processes on the Moon that cannot be explained by the well-established lunar magma ocean paradigm. Competing ideas on the PSA-forming mechanisms have invoked either (1) impact melting of troctolitic source rocks on the lunar surface or (2) magma–wallrock interactions between anorthositic crust and Mg-suite parental melts, but have been difficult to evaluate given the lack of ground truth samples. Here, we investigate the textures and mineral compositions of seven PSA clasts in lunar meteorite Northwest Africa (NWA) 15500, and the bulk trace element compositions of a PSA clast separate and NWA 15500 host lithologies A and B. Our findings suggest derivation of PSA from an incompatible-element-poor source and are consistent with PSA representing an Mg-suite lithology genetically related to pink spinel troctolites that reflects increased degrees of crustal assimilation during magma–wallrock interactions, and a sourcing of PSA far from the Procellarum KREEP Terrane. Excavation of PSA material was followed by multiple, subsequent localized impact events, resulting in the formation of Lithologies A and B.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.