“Ground truth” occurrence of Pink Spinel Anorthosite (PSA) as clasts in lunar meteorite Northwest Africa (NWA) 15500: Chemical evidence for a genetic relationship with lunar highlands Mg-suite and formation by magma–wallrock interactions

IF 2.2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Meteoritics & Planetary Science Pub Date : 2024-12-19 DOI:10.1111/maps.14298
Daniel Sheikh, Alex M. Ruzicka, Melinda L. Hutson
{"title":"“Ground truth” occurrence of Pink Spinel Anorthosite (PSA) as clasts in lunar meteorite Northwest Africa (NWA) 15500: Chemical evidence for a genetic relationship with lunar highlands Mg-suite and formation by magma–wallrock interactions","authors":"Daniel Sheikh,&nbsp;Alex M. Ruzicka,&nbsp;Melinda L. Hutson","doi":"10.1111/maps.14298","DOIUrl":null,"url":null,"abstract":"<p>Pink spinel anorthosite (PSA), a distinctive plagioclase and spinel-rich lithology (spinel &gt;20%) observed on the lunar surface by the Moon Mineralogy Mapper (M<sup>3</sup>) imaging spectrometer, has sparked considerable interest in understanding magmatic processes on the Moon that cannot be explained by the well-established lunar magma ocean paradigm. Competing ideas on the PSA-forming mechanisms have invoked either (1) impact melting of troctolitic source rocks on the lunar surface or (2) magma–wallrock interactions between anorthositic crust and Mg-suite parental melts, but have been difficult to evaluate given the lack of ground truth samples. Here, we investigate the textures and mineral compositions of seven PSA clasts in lunar meteorite Northwest Africa (NWA) 15500, and the bulk trace element compositions of a PSA clast separate and NWA 15500 host lithologies A and B. Our findings suggest derivation of PSA from an incompatible-element-poor source and are consistent with PSA representing an Mg-suite lithology genetically related to pink spinel troctolites that reflects increased degrees of crustal assimilation during magma–wallrock interactions, and a sourcing of PSA far from the Procellarum KREEP Terrane. Excavation of PSA material was followed by multiple, subsequent localized impact events, resulting in the formation of Lithologies A and B.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 2","pages":"206-224"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14298","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Pink spinel anorthosite (PSA), a distinctive plagioclase and spinel-rich lithology (spinel >20%) observed on the lunar surface by the Moon Mineralogy Mapper (M3) imaging spectrometer, has sparked considerable interest in understanding magmatic processes on the Moon that cannot be explained by the well-established lunar magma ocean paradigm. Competing ideas on the PSA-forming mechanisms have invoked either (1) impact melting of troctolitic source rocks on the lunar surface or (2) magma–wallrock interactions between anorthositic crust and Mg-suite parental melts, but have been difficult to evaluate given the lack of ground truth samples. Here, we investigate the textures and mineral compositions of seven PSA clasts in lunar meteorite Northwest Africa (NWA) 15500, and the bulk trace element compositions of a PSA clast separate and NWA 15500 host lithologies A and B. Our findings suggest derivation of PSA from an incompatible-element-poor source and are consistent with PSA representing an Mg-suite lithology genetically related to pink spinel troctolites that reflects increased degrees of crustal assimilation during magma–wallrock interactions, and a sourcing of PSA far from the Procellarum KREEP Terrane. Excavation of PSA material was followed by multiple, subsequent localized impact events, resulting in the formation of Lithologies A and B.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Meteoritics & Planetary Science
Meteoritics & Planetary Science 地学天文-地球化学与地球物理
CiteScore
3.90
自引率
31.80%
发文量
121
审稿时长
3 months
期刊介绍: First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.
期刊最新文献
Issue Information Cover CM carbonaceous chondrite petrofabrics and their implications for understanding the relative chronologies of parent body deformation and aqueous alteration Issue Information Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1