Xiaoyi Chen, Bin Wang, Yaowen Ye, Jin Liang, Jie Kong
{"title":"Design of Electrodes and Electrolytes for Silicon-Based Anode Lithium-Ion Batteries","authors":"Xiaoyi Chen, Bin Wang, Yaowen Ye, Jin Liang, Jie Kong","doi":"10.1002/eem2.12838","DOIUrl":null,"url":null,"abstract":"<p>The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity (372 mAh g<sup>−1</sup>). There is an urgent need to explore novel anode materials for lithium-ion batteries. Silicon (Si), the second-largest element outside of Earth, has an exceptionally high specific capacity (3579 mAh g<sup>−1</sup>), regarded as an excellent choice for the anode material in high-capacity lithium-ion batteries. However, it is low intrinsic conductivity and volume amplification during service status, prevented it from developing further. These difficulties can be successfully overcome by incorporating carbon into pure Si systems to form a composite anode and constructing a buffer structure. This review looks at the diffusion mechanism, various silicon-based anode material configurations (including sandwich, core-shell, yolk-shell, and other 3D mesh/porous structures), as well as the appropriate binders and electrolytes. Finally, a summary and viewpoints are offered on the characteristics and structural layout of various structures, metal/non-metal doping, and the compatibility and application of various binders and electrolytes for silicon-based anodes. This review aims to provide valuable insights into the research and development of silicon-based carbon anodes for high-performance lithium-ion batteries, as well as their integration with binders and electrolyte.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12838","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12838","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity (372 mAh g−1). There is an urgent need to explore novel anode materials for lithium-ion batteries. Silicon (Si), the second-largest element outside of Earth, has an exceptionally high specific capacity (3579 mAh g−1), regarded as an excellent choice for the anode material in high-capacity lithium-ion batteries. However, it is low intrinsic conductivity and volume amplification during service status, prevented it from developing further. These difficulties can be successfully overcome by incorporating carbon into pure Si systems to form a composite anode and constructing a buffer structure. This review looks at the diffusion mechanism, various silicon-based anode material configurations (including sandwich, core-shell, yolk-shell, and other 3D mesh/porous structures), as well as the appropriate binders and electrolytes. Finally, a summary and viewpoints are offered on the characteristics and structural layout of various structures, metal/non-metal doping, and the compatibility and application of various binders and electrolytes for silicon-based anodes. This review aims to provide valuable insights into the research and development of silicon-based carbon anodes for high-performance lithium-ion batteries, as well as their integration with binders and electrolyte.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.