{"title":"Superior Energy Storage Performance in Crosslinked Binary Polymers at High Temperatures Via Confinement Effect","authors":"Yongbin Liu, Yating Xu, Jinghui Gao, Jingzhe Xu, Ming Wu, Zhengwei Liu, Yilong Wang, Xiaojie Lou, Lisheng Zhong","doi":"10.1002/eem2.12847","DOIUrl":null,"url":null,"abstract":"<p>High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications, but the trade-off between energy density and temperature stability remains fundamentally challenging. Here, we report a general material design strategy to enhance energy storage performance at high temperatures by crosslinking a polar polymer and a high glass-transition temperature polymer as a crosslinked binary blend. Such crosslinked binary polymers display a temperature-insensitive and high energy density behavior of about 6.2 ~ 8.5 J cm<sup>−3</sup> up to 110 °C, showing a significant enhancement in thermal resistant properties and consequently outperforming most of the other ferroelectric polymers. Further microstructural investigations reveal that the improved thermal stability stems from the confinement effect on conformational motion of the crosslinking network, which is evidenced by the increased rigid amorphous fraction and steady intermolecular distance of amorphous regions from temperature-dependent X-ray diffraction results. Our findings provide a general and straightforward strategy to attain temperature-stable, high-energy-density polymer-based dielectrics for energy storage capacitors.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12847","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12847","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications, but the trade-off between energy density and temperature stability remains fundamentally challenging. Here, we report a general material design strategy to enhance energy storage performance at high temperatures by crosslinking a polar polymer and a high glass-transition temperature polymer as a crosslinked binary blend. Such crosslinked binary polymers display a temperature-insensitive and high energy density behavior of about 6.2 ~ 8.5 J cm−3 up to 110 °C, showing a significant enhancement in thermal resistant properties and consequently outperforming most of the other ferroelectric polymers. Further microstructural investigations reveal that the improved thermal stability stems from the confinement effect on conformational motion of the crosslinking network, which is evidenced by the increased rigid amorphous fraction and steady intermolecular distance of amorphous regions from temperature-dependent X-ray diffraction results. Our findings provide a general and straightforward strategy to attain temperature-stable, high-energy-density polymer-based dielectrics for energy storage capacitors.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.