{"title":"Green Synthesis of Copper Nanoparticles Using Panchagavya: Nanomaterials for Antibacterial, Anticancer, and Environmental Applications","authors":"Samuthirapandi Muniasamy, Marissa Angelina, Ponnirul Ponmanickam, Mysoon M. Al-Ansari, Antony Mythili, Saurav Dixit, Krishnan Raguvaran","doi":"10.1002/bio.70117","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study explores the green synthesis of copper nanoparticles (Cu-NPs) using Panchagavya, a traditional organic substance composed of five cow-derived components, as a reducing and stabilizing agent. Cu-NPs were characterized using UV–Vis, FT-IR, XRD, SEM-EDS, TEM, DLS, and zeta potential analysis, which revealed their size, shape, and elemental properties. They exhibited strong antibacterial activity against <i>Bacillus cereus</i> and <i>Pseudomonas aeruginosa</i>. Biofilm inhibition was observed at various concentrations, with 38.98% at ½ MIC, 67.48% at MIC, and 84.03% at 2× MIC. SEM analysis confirmed that Cu-NPs disrupted the bacterial cell membrane, causing leakage of cellular contents. Antioxidant assays (DPPH, FRAP) revealed high scavenging activity, with percentages of 88.50% and 92.54%, respectively. Cu-NPs showed anticancer activity on MCF7 cells, with an IC<sub>50</sub> of 38.18 μg/mL. Additionally, Cu-NPs significantly reduced nitric oxide (NO) production in RAW 264.7 macrophage cells in a dose-dependent manner. The Cu-NPs also exhibited larvicidal efficacy, with 99.12% mortality against <i>Aedes aegypti</i> and 95.26% against <i>Culex quinquefasciatus</i>, and LC<sub>50</sub> values of 29.40 μg/mL and 93.55 μg/mL, respectively. Morphological changes in treated larvae included body shrinkage and degeneration of tracheal tube and ventral brush were noticed as compared to control. Histopathological examinations of Cu-NP-treated larvae showed several structural damages, including damage to gut epithelial cells, dissipation of the muscle layer, and loss of goblet cells. GC–MS analysis of Panchagavya revealed its potential for various biological applications. These findings highlight the eco-friendly and multifunctional nature of Panchagavya-mediated Cu-NPs, demonstrating their potential for antimicrobial, antioxidant, anticancer, and larvicidal applications, which could contribute to sustainable pest and disease management strategies.</p>\n </div>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bio.70117","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the green synthesis of copper nanoparticles (Cu-NPs) using Panchagavya, a traditional organic substance composed of five cow-derived components, as a reducing and stabilizing agent. Cu-NPs were characterized using UV–Vis, FT-IR, XRD, SEM-EDS, TEM, DLS, and zeta potential analysis, which revealed their size, shape, and elemental properties. They exhibited strong antibacterial activity against Bacillus cereus and Pseudomonas aeruginosa. Biofilm inhibition was observed at various concentrations, with 38.98% at ½ MIC, 67.48% at MIC, and 84.03% at 2× MIC. SEM analysis confirmed that Cu-NPs disrupted the bacterial cell membrane, causing leakage of cellular contents. Antioxidant assays (DPPH, FRAP) revealed high scavenging activity, with percentages of 88.50% and 92.54%, respectively. Cu-NPs showed anticancer activity on MCF7 cells, with an IC50 of 38.18 μg/mL. Additionally, Cu-NPs significantly reduced nitric oxide (NO) production in RAW 264.7 macrophage cells in a dose-dependent manner. The Cu-NPs also exhibited larvicidal efficacy, with 99.12% mortality against Aedes aegypti and 95.26% against Culex quinquefasciatus, and LC50 values of 29.40 μg/mL and 93.55 μg/mL, respectively. Morphological changes in treated larvae included body shrinkage and degeneration of tracheal tube and ventral brush were noticed as compared to control. Histopathological examinations of Cu-NP-treated larvae showed several structural damages, including damage to gut epithelial cells, dissipation of the muscle layer, and loss of goblet cells. GC–MS analysis of Panchagavya revealed its potential for various biological applications. These findings highlight the eco-friendly and multifunctional nature of Panchagavya-mediated Cu-NPs, demonstrating their potential for antimicrobial, antioxidant, anticancer, and larvicidal applications, which could contribute to sustainable pest and disease management strategies.
期刊介绍:
Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry.
Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.