MAPK and STAT3 Inhibitors Modulate FoxP3 Expression and Regulatory T Cell Function

IF 4.5 3区 医学 Q2 IMMUNOLOGY European Journal of Immunology Pub Date : 2025-02-16 DOI:10.1002/eji.202451225
Nuria García-Díaz, Elise Solli, Ehsan Hajjar, Selma Cornillot-Clément, Johannes Landskron, Rafi Ahmad, Qian Wei, Kjetil Taskén
{"title":"MAPK and STAT3 Inhibitors Modulate FoxP3 Expression and Regulatory T Cell Function","authors":"Nuria García-Díaz,&nbsp;Elise Solli,&nbsp;Ehsan Hajjar,&nbsp;Selma Cornillot-Clément,&nbsp;Johannes Landskron,&nbsp;Rafi Ahmad,&nbsp;Qian Wei,&nbsp;Kjetil Taskén","doi":"10.1002/eji.202451225","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Regulatory T cells (Tregs) are a subset of T cells defined by the expression of Forkhead box protein P3 (FoxP3) playing a crucial role in regulating effector T cell activity. Tregs accumulate in the tumor microenvironment facilitating tumor growth. Thus, targeting FoxP3<sup>+</sup> Tregs could improve cancer immunotherapies. Here, we conducted a high-throughput, phenotypic screening of a drug repurposing library to identify compounds downregulating FoxP3 expression in human primary T cells. We identified the tyrosine kinase inhibitor bosutinib and the STAT3 inhibitor nifuroxazide effectively downregulating FoxP3 expression. To identify more potent compounds, structural analogs of these two compounds were searched and validated. These analogs were found to reduce FoxP3 expression in a similar- or more potent manner than the original hits. All compounds inhibited Treg suppressive functions and reduced the expression of Treg activation markers. Importantly, bosutinib disrupted FAK and CaMKII signaling more potently in Tregs, whilst nifuroxazide and its analog NA16 targeted STAT3 protein levels more effectively in Tregs. Additionally, bosutinib and NA16 targeted effector Tregs more effectively than other Treg subsets. In summary, bosutinib, nifuroxazide, and their analogs inhibited FoxP3 expression, Treg suppressive abilities, and Treg activation effectively, which could serve as tools for the improvement of current cancer immunotherapies.</p>\n </div>","PeriodicalId":165,"journal":{"name":"European Journal of Immunology","volume":"55 2","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eji.202451225","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Regulatory T cells (Tregs) are a subset of T cells defined by the expression of Forkhead box protein P3 (FoxP3) playing a crucial role in regulating effector T cell activity. Tregs accumulate in the tumor microenvironment facilitating tumor growth. Thus, targeting FoxP3+ Tregs could improve cancer immunotherapies. Here, we conducted a high-throughput, phenotypic screening of a drug repurposing library to identify compounds downregulating FoxP3 expression in human primary T cells. We identified the tyrosine kinase inhibitor bosutinib and the STAT3 inhibitor nifuroxazide effectively downregulating FoxP3 expression. To identify more potent compounds, structural analogs of these two compounds were searched and validated. These analogs were found to reduce FoxP3 expression in a similar- or more potent manner than the original hits. All compounds inhibited Treg suppressive functions and reduced the expression of Treg activation markers. Importantly, bosutinib disrupted FAK and CaMKII signaling more potently in Tregs, whilst nifuroxazide and its analog NA16 targeted STAT3 protein levels more effectively in Tregs. Additionally, bosutinib and NA16 targeted effector Tregs more effectively than other Treg subsets. In summary, bosutinib, nifuroxazide, and their analogs inhibited FoxP3 expression, Treg suppressive abilities, and Treg activation effectively, which could serve as tools for the improvement of current cancer immunotherapies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.70%
发文量
224
审稿时长
2 months
期刊介绍: The European Journal of Immunology (EJI) is an official journal of EFIS. Established in 1971, EJI continues to serve the needs of the global immunology community covering basic, translational and clinical research, ranging from adaptive and innate immunity through to vaccines and immunotherapy, cancer, autoimmunity, allergy and more. Mechanistic insights and thought-provoking immunological findings are of interest, as are studies using the latest omics technologies. We offer fast track review for competitive situations, including recently scooped papers, format free submission, transparent and fair peer review and more as detailed in our policies.
期刊最新文献
Towards the Next Generation of Data-Driven Therapeutics Using Spatially Resolved Single-Cell Technologies and Generative AI Tissue-Resident Regulatory T Cells Expressing CD83 Maintain Local Homeostasis and Restrict Th2 Responses in Asthma MAPK and STAT3 Inhibitors Modulate FoxP3 Expression and Regulatory T Cell Function Rheumatoid Arthritis Related B-Cell Changes Are Found Already in the Risk-RA Phase NK Cell Immaturity and NKp30 Expression Positively Correlate with Clinical Outcome in Multiple Myeloma Patients from the IFM2009 Clinical Trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1