Nicholaus Prasetya, I Gede Wenten, Bradley Paul Ladewig
{"title":"Advances in Membranes from Microporous Materials for Hydrogen Separation from Light Gases","authors":"Nicholaus Prasetya, I Gede Wenten, Bradley Paul Ladewig","doi":"10.1002/eem2.12843","DOIUrl":null,"url":null,"abstract":"<p>With the pressing concern of the climate change, hydrogen will undoubtedly play an essential role in the future to accelerate the way out from fossil fuel-based economy. In this case, the role of membrane-based separation cannot be neglected since, compared with other conventional process, membrane-based process is more effective and consumes less energy. Regarding this, metal-based membranes, particularly palladium, are usually employed for hydrogen separation because of its high selectivity. However, with the advancement of various microporous materials, the <i>status quo</i> of the metal-based membranes could be challenged since, compared with the metal-based membranes, they could offer better hydrogen separation performance and could also be cheaper to be produced. In this article, the advancement of membranes fabricated from five main microporous materials, namely silica-based membranes, zeolite membranes, carbon-based membranes, metal organic frameworks/covalent organic frameworks (MOF/COF) membranes and microporous polymeric membranes, for hydrogen separation from light gases are extensively discussed. Their performances are then summarized to give further insights regarding the pathway that should be taken to direct the research direction in the future.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 2","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12843","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12843","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the pressing concern of the climate change, hydrogen will undoubtedly play an essential role in the future to accelerate the way out from fossil fuel-based economy. In this case, the role of membrane-based separation cannot be neglected since, compared with other conventional process, membrane-based process is more effective and consumes less energy. Regarding this, metal-based membranes, particularly palladium, are usually employed for hydrogen separation because of its high selectivity. However, with the advancement of various microporous materials, the status quo of the metal-based membranes could be challenged since, compared with the metal-based membranes, they could offer better hydrogen separation performance and could also be cheaper to be produced. In this article, the advancement of membranes fabricated from five main microporous materials, namely silica-based membranes, zeolite membranes, carbon-based membranes, metal organic frameworks/covalent organic frameworks (MOF/COF) membranes and microporous polymeric membranes, for hydrogen separation from light gases are extensively discussed. Their performances are then summarized to give further insights regarding the pathway that should be taken to direct the research direction in the future.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.