A Smart MMP-9-responsive Hydrogel Releasing M2 Macrophage-derived Exosomes for Diabetic Wound Healing.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-02-16 DOI:10.1002/adhm.202404966
Hao Meng, Jianlong Su, Qi Shen, Wenzhi Hu, Pinxue Li, Kailu Guo, Xi Liu, Kui Ma, Weicheng Zhong, Shengqiu Chen, Liqian Ma, Yaying Hao, Junli Chen, Yufeng Jiang, Linlin Li, Xiaobing Fu, Cuiping Zhang
{"title":"A Smart MMP-9-responsive Hydrogel Releasing M2 Macrophage-derived Exosomes for Diabetic Wound Healing.","authors":"Hao Meng, Jianlong Su, Qi Shen, Wenzhi Hu, Pinxue Li, Kailu Guo, Xi Liu, Kui Ma, Weicheng Zhong, Shengqiu Chen, Liqian Ma, Yaying Hao, Junli Chen, Yufeng Jiang, Linlin Li, Xiaobing Fu, Cuiping Zhang","doi":"10.1002/adhm.202404966","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic diabetic wounds are characterized by prolonged inflammation and excessive accumulation of M1 macrophages, which impede the healing process. Therefore, resolving inflammation promptly and transitioning to the proliferative phase are critical steps for effective diabetic wound healing. Exosomes have emerged as a promising therapeutic strategy. In this study, a smart hydrogel capable of responding to pathological cues in the inflammatory microenvironment to promote the transition from inflammation to proliferation by delivering M2 macrophage-derived exosomes (M2-Exos) is developed. The smart hydrogel is synthesized through the cross-linking of oxidized dextran, a matrix metalloproteinase (MMP)-9-sensitive peptide, and carboxymethyl chitosan containing M2-Exos. In response to elevated MMP-9 concentrations in the inflammatory microenvironment, the hydrogel demonstrates diagnostic logic, adjusting the release kinetics of M2-Exos accordingly. The on-demand release of M2-Exos facilitated macrophage polarization from the M1 to the M2 phenotype, thereby promoting the transition from the inflammatory to the proliferative phase and accelerating diabetic wound healing. The transcriptomic analysis further reveals that the MMP-9-responsive hydrogel with M2-Exos delivery exerts anti-inflammatory and regenerative effects by downregulating inflammation-related pathways. This study introduces an innovative, microenvironment-responsive exosome delivery system that enables precise control of therapeutic agent release, offering a personalized approach for the treatment of chronic diabetic wounds.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404966"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404966","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic diabetic wounds are characterized by prolonged inflammation and excessive accumulation of M1 macrophages, which impede the healing process. Therefore, resolving inflammation promptly and transitioning to the proliferative phase are critical steps for effective diabetic wound healing. Exosomes have emerged as a promising therapeutic strategy. In this study, a smart hydrogel capable of responding to pathological cues in the inflammatory microenvironment to promote the transition from inflammation to proliferation by delivering M2 macrophage-derived exosomes (M2-Exos) is developed. The smart hydrogel is synthesized through the cross-linking of oxidized dextran, a matrix metalloproteinase (MMP)-9-sensitive peptide, and carboxymethyl chitosan containing M2-Exos. In response to elevated MMP-9 concentrations in the inflammatory microenvironment, the hydrogel demonstrates diagnostic logic, adjusting the release kinetics of M2-Exos accordingly. The on-demand release of M2-Exos facilitated macrophage polarization from the M1 to the M2 phenotype, thereby promoting the transition from the inflammatory to the proliferative phase and accelerating diabetic wound healing. The transcriptomic analysis further reveals that the MMP-9-responsive hydrogel with M2-Exos delivery exerts anti-inflammatory and regenerative effects by downregulating inflammation-related pathways. This study introduces an innovative, microenvironment-responsive exosome delivery system that enables precise control of therapeutic agent release, offering a personalized approach for the treatment of chronic diabetic wounds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
Modeling of a Bioengineered Immunomodulating Microenvironment for Cell Therapy (Adv. Healthcare Mater. 5/2025) Polymerized Salicylic Acid Microparticles Reduce the Progression and Formation of Human Neutrophil Extracellular Traps (NET)s (Adv. Healthcare Mater. 5/2025) Enhancement of Bone Tissue Regeneration with Multi-Functional Nanoparticles by Coordination of Immune, Osteogenic, and Angiogenic Responses (Adv. Healthcare Mater. 5/2025) Issue Information: Adv. Healthcare Mater. 5/2025 Biofabrication Directions in Recapitulating the Immune System-on-a-Chip (Adv. Healthcare Mater. 5/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1