One-carbon metabolism is distinct metabolic signature for proliferative intermediate exhausted T cells of ICB-resistant cancer patients.

IF 6.1 2区 生物学 Q1 CELL BIOLOGY Cell Death Discovery Pub Date : 2025-02-14 DOI:10.1038/s41420-025-02332-z
Ye-Chan Park, Yeseong Hwang, Jae Woong Jeong, Chae Min Lee, Minki Kim, Sugyeong Jo, Seyeon Joo, Nahee Hwang, Sungsoon Fang
{"title":"One-carbon metabolism is distinct metabolic signature for proliferative intermediate exhausted T cells of ICB-resistant cancer patients.","authors":"Ye-Chan Park, Yeseong Hwang, Jae Woong Jeong, Chae Min Lee, Minki Kim, Sugyeong Jo, Seyeon Joo, Nahee Hwang, Sungsoon Fang","doi":"10.1038/s41420-025-02332-z","DOIUrl":null,"url":null,"abstract":"<p><p>One-carbon metabolism (1CM) has been reported to promote cancer progression across various malignancies. While 1CM is critical for cell proliferation by enhancing nucleotide synthesis, its physiological roles within different cell types in the tumor immune microenvironment (TIME) still remain unclear. In this study, we analyzed bulk-RNA sequencing and single-cell RNA sequencing (scRNA-seq) data from lung adenocarcinoma (LUAD) patients to elucidate the functional roles of 1CM within the TIME. Moreover, we examined scRNA-seq data from patients treated with immunotherapy across various cancers, including LUAD, glioblastoma, renal cell carcinoma, colorectal cancer, and triple-negative breast cancer. Compared to other cell types, 1CM gene profiles are significantly enriched in a specific subset of T cells. Intriguingly, these high-1CM T cells are identified as proliferative intermediate exhausted T cells (Tex<sup>int</sup>). Furthermore, these proliferative Tex<sup>int</sup> received the most robust CD137 signaling. Consistently, analysis of scRNA-seq data from LUAD patients undergoing anti-PD1 immunotherapy demonstrated that proliferative Tex<sup>int</sup> exhibited higher 1CM scores and increased CD137 signaling. This observation was particularly pronounced in non-responders to immunotherapy, where the Tex<sup>int</sup> population was significantly expanded. We further established that 1CM is a prominent signaling pathway in proliferative Tex<sup>int</sup> in patients resistant to immunotherapy across multiple cancer types. Collectively, we identify CD137 signaling as a distinctive pathway in proliferative Tex<sup>int</sup> of LUAD patients who do not respond to immunotherapy. These findings propose that targeting 1CM may represent a novel therapeutic strategy to enhance the efficacy of immunotherapy by mitigating Tex<sup>int</sup> proliferation in diverse cancers.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"60"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829039/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02332-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

One-carbon metabolism (1CM) has been reported to promote cancer progression across various malignancies. While 1CM is critical for cell proliferation by enhancing nucleotide synthesis, its physiological roles within different cell types in the tumor immune microenvironment (TIME) still remain unclear. In this study, we analyzed bulk-RNA sequencing and single-cell RNA sequencing (scRNA-seq) data from lung adenocarcinoma (LUAD) patients to elucidate the functional roles of 1CM within the TIME. Moreover, we examined scRNA-seq data from patients treated with immunotherapy across various cancers, including LUAD, glioblastoma, renal cell carcinoma, colorectal cancer, and triple-negative breast cancer. Compared to other cell types, 1CM gene profiles are significantly enriched in a specific subset of T cells. Intriguingly, these high-1CM T cells are identified as proliferative intermediate exhausted T cells (Texint). Furthermore, these proliferative Texint received the most robust CD137 signaling. Consistently, analysis of scRNA-seq data from LUAD patients undergoing anti-PD1 immunotherapy demonstrated that proliferative Texint exhibited higher 1CM scores and increased CD137 signaling. This observation was particularly pronounced in non-responders to immunotherapy, where the Texint population was significantly expanded. We further established that 1CM is a prominent signaling pathway in proliferative Texint in patients resistant to immunotherapy across multiple cancer types. Collectively, we identify CD137 signaling as a distinctive pathway in proliferative Texint of LUAD patients who do not respond to immunotherapy. These findings propose that targeting 1CM may represent a novel therapeutic strategy to enhance the efficacy of immunotherapy by mitigating Texint proliferation in diverse cancers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
期刊最新文献
Syk inhibitor attenuates lupus in FcγRIIb-/- mice through the Inhibition of DNA extracellular traps from macrophages and neutrophils via p38MAPK-dependent pathway. Cathepsin B prevents cell death by fragmentation and destruction of pathological amyloid fibrils. CDK8/19 inhibition attenuates G1 arrest induced by BCR-ABL antagonists and accelerates death of chronic myelogenous leukemia cells. One-carbon metabolism is distinct metabolic signature for proliferative intermediate exhausted T cells of ICB-resistant cancer patients. Retraction Note: METTL3 improves cardiomyocyte proliferation upon myocardial infarction via upregulating miR-17-3p in a DGCR8-dependent manner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1