Screening dental implant design parameters for effect on the fatigue limit of reduced-diameter implants.

IF 4.6 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Dental Materials Pub Date : 2025-02-14 DOI:10.1016/j.dental.2025.02.001
Megha Satpathy, Matthew Loeb, Rose M Jose, Matthew J Sinclair, Yuanyuan Duan, Susana M Salazar Marocho, Michael D Roach, Jason A Griggs
{"title":"Screening dental implant design parameters for effect on the fatigue limit of reduced-diameter implants.","authors":"Megha Satpathy, Matthew Loeb, Rose M Jose, Matthew J Sinclair, Yuanyuan Duan, Susana M Salazar Marocho, Michael D Roach, Jason A Griggs","doi":"10.1016/j.dental.2025.02.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study screened the design parameters of a reduced-diameter implant to determine which parameters have the most significant effect on the implant fatigue limit.</p><p><strong>Methods: </strong>A dental implant assembly, which included an implant body (Biomet 3i), an abutment (GingiHue®), and an abutment screw (Gold-Tite Square screw) was scanned using micro-computed tomography (SkyScan 1172) and was measured using Mimics (Materialise) and an optical microscope (VHX-1000, Keyence). Sixteen design parameters were measured, and the values of the commercial design were taken as reference level for each design parameter. Values up to 20 % lower and 20 % higher than the reference were explored using a Taguchi orthogonal array (DOE++, Reliasoft), which varies more than one design parameter at a time to efficiently explore all main effects and lower order interactions across few implant designs. Solid models of these 27 implant designs and the reference design were constructed using SOLIDWORKS (Dassault Systèmes). Each solid model was loaded according to ISO 14801. fe-safe (Dassault Systèmes) was used to estimate the fatigue limits. ANOVA statistical test in DOE++ was used to screen the design parameters.</p><p><strong>Results: </strong>Interaction between the coronal and apical tapers of the implant body had a significant effect on the fatigue limit (p ≤ 0.05), where fatigue limit was low for designs with a constant taper. Conversely, the combination of high degree of apical taper and low degree of coronal taper lead to the highest fatigue limit.</p><p><strong>Significance: </strong>Using a Taguchi orthogonal array proved to be an efficient strategy for screening implant design parameters for effect on fatigue limit. The modified implant designed by manipulating the most influential parameters is predicted to have much greater fatigue limit compared to the commercially available design.</p>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dental.2025.02.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study screened the design parameters of a reduced-diameter implant to determine which parameters have the most significant effect on the implant fatigue limit.

Methods: A dental implant assembly, which included an implant body (Biomet 3i), an abutment (GingiHue®), and an abutment screw (Gold-Tite Square screw) was scanned using micro-computed tomography (SkyScan 1172) and was measured using Mimics (Materialise) and an optical microscope (VHX-1000, Keyence). Sixteen design parameters were measured, and the values of the commercial design were taken as reference level for each design parameter. Values up to 20 % lower and 20 % higher than the reference were explored using a Taguchi orthogonal array (DOE++, Reliasoft), which varies more than one design parameter at a time to efficiently explore all main effects and lower order interactions across few implant designs. Solid models of these 27 implant designs and the reference design were constructed using SOLIDWORKS (Dassault Systèmes). Each solid model was loaded according to ISO 14801. fe-safe (Dassault Systèmes) was used to estimate the fatigue limits. ANOVA statistical test in DOE++ was used to screen the design parameters.

Results: Interaction between the coronal and apical tapers of the implant body had a significant effect on the fatigue limit (p ≤ 0.05), where fatigue limit was low for designs with a constant taper. Conversely, the combination of high degree of apical taper and low degree of coronal taper lead to the highest fatigue limit.

Significance: Using a Taguchi orthogonal array proved to be an efficient strategy for screening implant design parameters for effect on fatigue limit. The modified implant designed by manipulating the most influential parameters is predicted to have much greater fatigue limit compared to the commercially available design.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Dental Materials
Dental Materials 工程技术-材料科学:生物材料
CiteScore
9.80
自引率
10.00%
发文量
290
审稿时长
67 days
期刊介绍: Dental Materials publishes original research, review articles, and short communications. Academy of Dental Materials members click here to register for free access to Dental Materials online. The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology. Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.
期刊最新文献
Influence of surface treatment before glazing on wear and flexural strength of translucent zirconia. Development and characterization of 3D-printed denture base resin composites having self-healing potential. Screening dental implant design parameters for effect on the fatigue limit of reduced-diameter implants. Editorial Board Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1