Oregano leaf odor regulates sodium chloride consumption in mice.

IF 1.4 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioscience, Biotechnology, and Biochemistry Pub Date : 2025-02-14 DOI:10.1093/bbb/zbaf014
Kazumi Osada, Nanako Akiyama, Akira Hosono, Motoko Ohata, Issei Yokoyama, Sadaharu Miyazono, Michio Komai
{"title":"Oregano leaf odor regulates sodium chloride consumption in mice.","authors":"Kazumi Osada, Nanako Akiyama, Akira Hosono, Motoko Ohata, Issei Yokoyama, Sadaharu Miyazono, Michio Komai","doi":"10.1093/bbb/zbaf014","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores how the odor of oregano and its active component, carvacrol, influence salt preference in mice. Using a two-bottle choice test (distilled water vs. 0.15 M NaCl), 66 C57BL/6 J mice were exposed to oregano odor. Female mice showed a significant reduction in saline intake with oregano or carvacrol exposure, while the effect was lower in males. Carvacrol was identified in dried oregano using GC-MS with HS-SPME. Neurologically, oregano odor increased c-Fos immunoreactivity in the ventral bed nucleus of the stria terminalis (BNST), a region regulating salt appetite. These results suggest that oregano odor decreases salt preference, partly due to carvacrol, which stimulates brain areas controlling salt appetite. This present study highlights the role of olfactory cues in modulating dietary behavior and suggests potential applications for managing salt consumption in health contexts.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbaf014","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores how the odor of oregano and its active component, carvacrol, influence salt preference in mice. Using a two-bottle choice test (distilled water vs. 0.15 M NaCl), 66 C57BL/6 J mice were exposed to oregano odor. Female mice showed a significant reduction in saline intake with oregano or carvacrol exposure, while the effect was lower in males. Carvacrol was identified in dried oregano using GC-MS with HS-SPME. Neurologically, oregano odor increased c-Fos immunoreactivity in the ventral bed nucleus of the stria terminalis (BNST), a region regulating salt appetite. These results suggest that oregano odor decreases salt preference, partly due to carvacrol, which stimulates brain areas controlling salt appetite. This present study highlights the role of olfactory cues in modulating dietary behavior and suggests potential applications for managing salt consumption in health contexts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioscience, Biotechnology, and Biochemistry
Bioscience, Biotechnology, and Biochemistry 生物-生化与分子生物学
CiteScore
3.50
自引率
0.00%
发文量
183
审稿时长
1 months
期刊介绍: Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).
期刊最新文献
Biological effects of Maillard reaction products: Use of Caenorhabditis elegans as an in vivo model. Caenorhabditis elegans as a model host to study effects of lactic acid bacteria and functional food factors. Physiology of vitamin B12: a study on its molecular mechanisms using a Caenorhabditis elegans model. The usefulness of Caenorhabditis elegans lifespan analysis in screening for functional foods. Angiogenin-catalyzed cleavage within tRNA anticodon-loops identified by cP-RNA-seq.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1