Decoding affect in emotional body language: Valence representation in the action observation network.

Johannes Keck, Julia Bachmann, Adam Zabicki, Jörn Munzert, Britta Krüger
{"title":"Decoding affect in emotional body language: Valence representation in the action observation network.","authors":"Johannes Keck, Julia Bachmann, Adam Zabicki, Jörn Munzert, Britta Krüger","doi":"10.1093/scan/nsaf021","DOIUrl":null,"url":null,"abstract":"<p><p>Humans are highly adept at inferring emotional states from body movements in social interactions. Nonetheless, it is under debate how this process is facilitated by neural activations across multiple brain regions. The specific contributions of various brain areas to the perception of valence in biological motion remain poorly understood, particularly those within the action observation network (AON) and those involved in processing emotional valence. This study explores which cortical regions involved in processing emotional body language depicted by kinematic stimuli contain valence information, and whether this is reflected either in the magnitude of activation or in distinct activation patterns. Results showed that neural patterns within the AON, notably the inferior parietal lobule (IPL), exhibit a neural geometry that reflects the valence impressions of the observed stimuli. However, the representational geometry of valence-sensitive areas, mirrors these impressions to a lesser degree. Our findings also reveal that the activation magnitude in both AON and valence-sensitive regions does not correlate with the perceived valence of emotional interactions. Results underscore the critical role of the AON, particularly the IPL, in interpreting the valence of emotional interactions, indicating its essential function in the perception of valence, especially when observing biological movements.</p>","PeriodicalId":94208,"journal":{"name":"Social cognitive and affective neuroscience","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social cognitive and affective neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/scan/nsaf021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Humans are highly adept at inferring emotional states from body movements in social interactions. Nonetheless, it is under debate how this process is facilitated by neural activations across multiple brain regions. The specific contributions of various brain areas to the perception of valence in biological motion remain poorly understood, particularly those within the action observation network (AON) and those involved in processing emotional valence. This study explores which cortical regions involved in processing emotional body language depicted by kinematic stimuli contain valence information, and whether this is reflected either in the magnitude of activation or in distinct activation patterns. Results showed that neural patterns within the AON, notably the inferior parietal lobule (IPL), exhibit a neural geometry that reflects the valence impressions of the observed stimuli. However, the representational geometry of valence-sensitive areas, mirrors these impressions to a lesser degree. Our findings also reveal that the activation magnitude in both AON and valence-sensitive regions does not correlate with the perceived valence of emotional interactions. Results underscore the critical role of the AON, particularly the IPL, in interpreting the valence of emotional interactions, indicating its essential function in the perception of valence, especially when observing biological movements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊最新文献
Emotional characteristics and intrinsic brain network functional connectivity among adults aged 75. Social cognition in basal ganglia pathologies: Theory of Mind in Huntington's and Parkinson's diseases. Changes in interpersonal distance modulate social attention engagement: evidence from EEG alpha band suppression. Decoding affect in emotional body language: Valence representation in the action observation network. Crus control: Effective cerebello-cerebral connectivity during social action prediction using Dynamic Causal Modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1