Electrochemical Random-Access Memory: Progress, Perspectives, and Opportunities

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Reviews Pub Date : 2025-02-17 DOI:10.1021/acs.chemrev.4c00512
A. Alec Talin, Jordan Meyer, Jingxian Li, Mantao Huang, Miranda Schwacke, Heejung W. Chung, Longlong Xu, Elliot J. Fuller, Yiyang Li, Bilge Yildiz
{"title":"Electrochemical Random-Access Memory: Progress, Perspectives, and Opportunities","authors":"A. Alec Talin, Jordan Meyer, Jingxian Li, Mantao Huang, Miranda Schwacke, Heejung W. Chung, Longlong Xu, Elliot J. Fuller, Yiyang Li, Bilge Yildiz","doi":"10.1021/acs.chemrev.4c00512","DOIUrl":null,"url":null,"abstract":"Non-von Neumann computing using neuromorphic systems based on analogue synaptic and neuronal elements has emerged as a potential solution to tackle the growing need for more efficient data processing, but progress toward practical systems has been stymied due to a lack of materials and devices with the appropriate attributes. Recently, solid state electrochemical ion-insertion, also known as electrochemical random access memory (ECRAM) has emerged as a promising approach to realize the needed device characteristics. ECRAM is a three terminal device that operates by tuning electronic conductance in functional materials through solid-state electrochemical redox reactions. This mechanism can be considered as a gate-controlled bulk modulation of dopants and/or phases in the channel. Early work demonstrating that ECRAM can achieve nearly ideal analogue synaptic characteristics has sparked tremendous interest in this approach. More recently, the realization that electrochemical ion insertion can be used to tune the electronic properties of many types of materials including transition metal oxides, layered two-dimensional materials, organic and coordination polymers, and that the changes in conductance can span orders of magnitude has further attracted interest in ECRAM as the basis for analogue synaptic elements for inference accelerators as well as for dynamical devices that can emulate a wide range of neuronal characteristics for implementation in analogue spiking neural networks. At its core, ECRAM shares many fundamental aspects with rechargeable batteries, where ion insertion materials are used extensively for their ability to reversibly store charge and energy. Computing applications, however, present drastically different requirements: systems will require many millions of devices, scaled down to tens of nanometers, all while achieving reliable electronic-state tuning at scaled-up rates and endurances, and with minimal energy dissipation and noise. In this review, we discuss the history, basic concepts, recent progress, as well as the challenges and opportunities for different types of ECRAM, broadly grouped by their primary mobile ionic charge carrier, including Li, protons, and oxygen vacancies.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"80 4 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00512","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-von Neumann computing using neuromorphic systems based on analogue synaptic and neuronal elements has emerged as a potential solution to tackle the growing need for more efficient data processing, but progress toward practical systems has been stymied due to a lack of materials and devices with the appropriate attributes. Recently, solid state electrochemical ion-insertion, also known as electrochemical random access memory (ECRAM) has emerged as a promising approach to realize the needed device characteristics. ECRAM is a three terminal device that operates by tuning electronic conductance in functional materials through solid-state electrochemical redox reactions. This mechanism can be considered as a gate-controlled bulk modulation of dopants and/or phases in the channel. Early work demonstrating that ECRAM can achieve nearly ideal analogue synaptic characteristics has sparked tremendous interest in this approach. More recently, the realization that electrochemical ion insertion can be used to tune the electronic properties of many types of materials including transition metal oxides, layered two-dimensional materials, organic and coordination polymers, and that the changes in conductance can span orders of magnitude has further attracted interest in ECRAM as the basis for analogue synaptic elements for inference accelerators as well as for dynamical devices that can emulate a wide range of neuronal characteristics for implementation in analogue spiking neural networks. At its core, ECRAM shares many fundamental aspects with rechargeable batteries, where ion insertion materials are used extensively for their ability to reversibly store charge and energy. Computing applications, however, present drastically different requirements: systems will require many millions of devices, scaled down to tens of nanometers, all while achieving reliable electronic-state tuning at scaled-up rates and endurances, and with minimal energy dissipation and noise. In this review, we discuss the history, basic concepts, recent progress, as well as the challenges and opportunities for different types of ECRAM, broadly grouped by their primary mobile ionic charge carrier, including Li, protons, and oxygen vacancies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
期刊最新文献
MOF-Based Electrocatalysts: An Overview from the Perspective of Structural Design Theory and Modeling of Transport for Simple Fluids in Nanoporous Materials: From Microscopic to Coarse-Grained Descriptions Electrochemical Random-Access Memory: Progress, Perspectives, and Opportunities Luminescent Lanthanides in Biorelated Applications: From Molecules to Nanoparticles and Diagnostic Probes to Therapeutics Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1