The role of defect-modulated HKUST-1 MOF nodes in non-oxidative ethanol dehydrogenation: an observed phenomenon of catalyst transfiguration

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Dalton Transactions Pub Date : 2025-02-17 DOI:10.1039/d4dt03300k
Anjali Ganai, Pranab Sarkar
{"title":"The role of defect-modulated HKUST-1 MOF nodes in non-oxidative ethanol dehydrogenation: an observed phenomenon of catalyst transfiguration","authors":"Anjali Ganai, Pranab Sarkar","doi":"10.1039/d4dt03300k","DOIUrl":null,"url":null,"abstract":"Bioethanol production from agricultural residues has emerged as an important process of biomass valorization. The production of acetaldehyde from bioethanol has also started gaining ground. Since Cu-based catalysts are well-known for their ability to catalyse ethanol dehydrogenation, we have used a defect-modulated Cu-based metal–organic framework (MOF), HKUST-1, for obtaining mechanistic insights into the process. Defect-modulation in the form of a missing linker creates an easily accessible dual-atom site which can simultaneously participate in catalysing the reaction. Although ethanol dehydrogenation to ethylene competes with acetaldehyde production over both the defective HKUST-1(H) and HKUST-1(OH) MOF nodes, acetaldehyde formation occurs selectively. However, HKUST-1(OH) could not be regenerated at the end of the acetaldehyde formation pathway; HKUST-1(OH) ultimately transformed to HKUST-1(H) at the end of the cycle. This led to the introduction of the term ‘catalyst transfiguration’ where the catalyst, although transfigured, retains its ability to catalyse the reaction. Since, the HKUST-1(H) MOF node has the ability to selectively transform ethanol to acetaldehyde, we can safely conclude that the use of HKUST-1(OH) will not cause acetaldehyde formation to come to a halt and the reaction can go on beyond the first catalytic cycle. Thus, both the defective MOF nodes can selectively transform ethanol to acetaldehyde.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"49 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt03300k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Bioethanol production from agricultural residues has emerged as an important process of biomass valorization. The production of acetaldehyde from bioethanol has also started gaining ground. Since Cu-based catalysts are well-known for their ability to catalyse ethanol dehydrogenation, we have used a defect-modulated Cu-based metal–organic framework (MOF), HKUST-1, for obtaining mechanistic insights into the process. Defect-modulation in the form of a missing linker creates an easily accessible dual-atom site which can simultaneously participate in catalysing the reaction. Although ethanol dehydrogenation to ethylene competes with acetaldehyde production over both the defective HKUST-1(H) and HKUST-1(OH) MOF nodes, acetaldehyde formation occurs selectively. However, HKUST-1(OH) could not be regenerated at the end of the acetaldehyde formation pathway; HKUST-1(OH) ultimately transformed to HKUST-1(H) at the end of the cycle. This led to the introduction of the term ‘catalyst transfiguration’ where the catalyst, although transfigured, retains its ability to catalyse the reaction. Since, the HKUST-1(H) MOF node has the ability to selectively transform ethanol to acetaldehyde, we can safely conclude that the use of HKUST-1(OH) will not cause acetaldehyde formation to come to a halt and the reaction can go on beyond the first catalytic cycle. Thus, both the defective MOF nodes can selectively transform ethanol to acetaldehyde.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
期刊最新文献
Crystal structure and ferrimagnetism of AgCo3Cr(MoO4)5 with mixed occupation of the transition metal sites Unveiling surface reactivity: the crucial role of auxiliary ligands in Gallium amidinate-based precursors for Atomic Layer Deposition Chemical and Electrochemical Lithiation of Van Der Waals Oxytelluride V2Te2O Synthesis of [Os(bpy)2(py)(OH2)](PF6)x Substituted Pyridine Complexes; Characterization of a Singly Bridged H3O2− Ligand Dicopper(I) Complexes of a Binucleating, Dianionic, Naphthyridine Bis(amide) Ligand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1