{"title":"Formation of late-generation atmospheric compounds inhibited by rapid deposition","authors":"Chenyang Bi, Gabriel Isaacman-VanWertz","doi":"10.1038/s41561-025-01650-2","DOIUrl":null,"url":null,"abstract":"<p>Reactive organic carbon species are important fuel for atmospheric chemical reactions, including the formation of secondary organic aerosol. However, in parallel to atmospheric oxidation processes, deposition can remove compounds from the atmosphere and impact downstream environments. To understand the impact of deposition on atmospheric oxidation, we present a framework for predicting and visualizing the fate of a molecule on the basis of the physicochemical properties of compounds (Henry’s law constant, vapour pressure and reaction rate constants), which are used to estimate timescales for oxidation and deposition. By implementing our deposition rates in chemical models, we show that deposition substantially suppresses atmospheric reactivity and aerosol formation by removing early-generation products and preventing the formation of large fractions (up to 90%) of downstream, late-generation compounds. Deposition is frequently missing in the laboratory experiments and detailed chemical modelling, which probably biases our understanding of atmospheric composition.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"1 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41561-025-01650-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive organic carbon species are important fuel for atmospheric chemical reactions, including the formation of secondary organic aerosol. However, in parallel to atmospheric oxidation processes, deposition can remove compounds from the atmosphere and impact downstream environments. To understand the impact of deposition on atmospheric oxidation, we present a framework for predicting and visualizing the fate of a molecule on the basis of the physicochemical properties of compounds (Henry’s law constant, vapour pressure and reaction rate constants), which are used to estimate timescales for oxidation and deposition. By implementing our deposition rates in chemical models, we show that deposition substantially suppresses atmospheric reactivity and aerosol formation by removing early-generation products and preventing the formation of large fractions (up to 90%) of downstream, late-generation compounds. Deposition is frequently missing in the laboratory experiments and detailed chemical modelling, which probably biases our understanding of atmospheric composition.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.