Does habitat or climate change drive species range shifts?

IF 5.4 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Ecography Pub Date : 2025-02-17 DOI:10.1111/ecog.07560
Toni Lyn Morelli, Michael T. Hallworth, Timothy Duclos, Adam Ells, Steven D. Faccio, Jane R. Foster, Kent P. McFarland, Keith Nislow, Joel Ralston, Mary Ratnaswamy, William V. Deluca, Alexej P. K. Siren
{"title":"Does habitat or climate change drive species range shifts?","authors":"Toni Lyn Morelli, Michael T. Hallworth, Timothy Duclos, Adam Ells, Steven D. Faccio, Jane R. Foster, Kent P. McFarland, Keith Nislow, Joel Ralston, Mary Ratnaswamy, William V. Deluca, Alexej P. K. Siren","doi":"10.1111/ecog.07560","DOIUrl":null,"url":null,"abstract":"A primary prediction of climate change ecology is that species will track their climate niche poleward and upslope. However, studies have shown species responding in surprising ways. In this study, we aim to understand the impact of global change on species ranges by considering both climate and habitat changes. Using occupancy analysis of acoustic survey data in the mountains of the northeastern United States, we tested specific predictions of range responses to warming (shifting upslope), precipitation change (shifting downslope), and forest composition change (shifting downslope). We found that American red squirrels <i>Tamiasciurus hudsonicus</i>, key nodes in northern North American food webs, are not tracking increasing temperatures upslope, despite substantial warming in recent decades. Structural equation modeling indicates that red squirrel abundance is primarily influenced by red-spruce forest cover, which has shifted downslope with recovery from historical logging and acid deposition. Accounting for the multiple dimensions of global change will enable better predictions and more effective conservation strategies.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"12 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07560","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

A primary prediction of climate change ecology is that species will track their climate niche poleward and upslope. However, studies have shown species responding in surprising ways. In this study, we aim to understand the impact of global change on species ranges by considering both climate and habitat changes. Using occupancy analysis of acoustic survey data in the mountains of the northeastern United States, we tested specific predictions of range responses to warming (shifting upslope), precipitation change (shifting downslope), and forest composition change (shifting downslope). We found that American red squirrels Tamiasciurus hudsonicus, key nodes in northern North American food webs, are not tracking increasing temperatures upslope, despite substantial warming in recent decades. Structural equation modeling indicates that red squirrel abundance is primarily influenced by red-spruce forest cover, which has shifted downslope with recovery from historical logging and acid deposition. Accounting for the multiple dimensions of global change will enable better predictions and more effective conservation strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecography
Ecography 环境科学-生态学
CiteScore
11.60
自引率
3.40%
发文量
122
审稿时长
8-16 weeks
期刊介绍: ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem. Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography. Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.
期刊最新文献
Dispersal rather than climate and local environment constrains non‐marine snail fauna in west Greenland Does habitat or climate change drive species range shifts? Marcescence and prostrate growth in tree ferns are adaptations to cold tolerance GEE-PICX: generating cloud-free Sentinel-2 and Landsat image composites and spectral indices for custom areas and time frames – a Google Earth Engine web application Emerging horizons in predictive biogeography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1