Global Applicability of the Kappa Distribution for Rainfall Frequency Analysis

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Water Resources Research Pub Date : 2025-02-17 DOI:10.1029/2024wr039035
Robert Strong, Olivia Borgstroem, Rory Nathan, Conrad Wasko, Declan O’Shea
{"title":"Global Applicability of the Kappa Distribution for Rainfall Frequency Analysis","authors":"Robert Strong, Olivia Borgstroem, Rory Nathan, Conrad Wasko, Declan O’Shea","doi":"10.1029/2024wr039035","DOIUrl":null,"url":null,"abstract":"Extreme rainfall events have profound implications across various sectors, necessitating accurate modeling to assess risks and devise effective adaptation strategies. The common practice of employing three-parameter probability distributions, such as the Generalized Extreme Value (GEV) and Pearson Type III distributions, in rainfall frequency analysis often encounters limitations in capturing rare, heavy-tailed events with a lack of consensus as to which distribution is the most applicable. In this study, we explore the applicability of the four-parameter Kappa distribution (K4D) for modeling extreme daily rainfalls using annual maxima from the Global Historical Climatology Network-Daily database. Quality checks and thresholds were used to remove erroneous and poor-quality data, retaining 20,500 stations with 50 or more years of data. The variation in the second shape parameter (<span data-altimg=\"/cms/asset/38c8a8bd-6099-4a01-845f-e8dfd3769fca/wrcr27658-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"107\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27658-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"h\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27658:wrcr27658-math-0001\" display=\"inline\" location=\"graphic/wrcr27658-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"h\" data-semantic-type=\"identifier\">h</mi></mrow>$h$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) was examined across regime characteristics, geospatial regions, and climate regional groupings to identify where the K4D is best able to model extreme rainfalls. Consistent with theoretical expectations, <span data-altimg=\"/cms/asset/1a96b52e-6d43-4f73-899d-be3c670df5d3/wrcr27658-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"108\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27658-math-0002.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"h\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27658:wrcr27658-math-0002\" display=\"inline\" location=\"graphic/wrcr27658-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"h\" data-semantic-type=\"identifier\">h</mi></mrow>$h$</annotation></semantics></math></mjx-assistive-mml></mjx-container> converges toward zero (i.e., toward the limiting GEV distribution) as the average number of rainfall events per year increases (here approximated by rain days). However, in arid regions with a limited number of annual storm events, we observe average values of <span data-altimg=\"/cms/asset/57f11d0d-1cc0-4f26-b5c8-494a53ff54dd/wrcr27658-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"109\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27658-math-0003.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"h\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27658:wrcr27658-math-0003\" display=\"inline\" location=\"graphic/wrcr27658-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"h\" data-semantic-type=\"identifier\">h</mi></mrow>$h$</annotation></semantics></math></mjx-assistive-mml></mjx-container> greater than zero, with a strong regional and climatic coherence in <span data-altimg=\"/cms/asset/f8ccd802-db91-4364-8148-8b9bad41dcde/wrcr27658-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"110\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27658-math-0004.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"h\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr27658:wrcr27658-math-0004\" display=\"inline\" location=\"graphic/wrcr27658-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"h\" data-semantic-type=\"identifier\">h</mi></mrow>$h$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. Our results suggest that there is merit in using the K4D for modeling heavy tail behavior, particularly in regions with a small number of events per year. These findings will contribute to advancing statistical modeling techniques for extreme rainfall, benefiting hydrological modeling and risk assessments.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"28 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr039035","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme rainfall events have profound implications across various sectors, necessitating accurate modeling to assess risks and devise effective adaptation strategies. The common practice of employing three-parameter probability distributions, such as the Generalized Extreme Value (GEV) and Pearson Type III distributions, in rainfall frequency analysis often encounters limitations in capturing rare, heavy-tailed events with a lack of consensus as to which distribution is the most applicable. In this study, we explore the applicability of the four-parameter Kappa distribution (K4D) for modeling extreme daily rainfalls using annual maxima from the Global Historical Climatology Network-Daily database. Quality checks and thresholds were used to remove erroneous and poor-quality data, retaining 20,500 stations with 50 or more years of data. The variation in the second shape parameter (h$h$) was examined across regime characteristics, geospatial regions, and climate regional groupings to identify where the K4D is best able to model extreme rainfalls. Consistent with theoretical expectations, h$h$ converges toward zero (i.e., toward the limiting GEV distribution) as the average number of rainfall events per year increases (here approximated by rain days). However, in arid regions with a limited number of annual storm events, we observe average values of h$h$ greater than zero, with a strong regional and climatic coherence in h$h$. Our results suggest that there is merit in using the K4D for modeling heavy tail behavior, particularly in regions with a small number of events per year. These findings will contribute to advancing statistical modeling techniques for extreme rainfall, benefiting hydrological modeling and risk assessments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
期刊最新文献
Declining Groundwater Storage in the Indus Basin Revealed Using GRACE and GRACE-FO Data Characterizing Aquifer Properties and Groundwater Storage at North China Plain Using Geodetic and Hydrological Measurements Controls of Climate Seasonality and Vegetation Dynamics on the Seasonal Variability of Terrestrial Water Storage Under Diverse Climate Regimes Efficient Implementation of Tidal Forcing in Simulations of Groundwater Dynamics in Subterranean Estuaries Global Applicability of the Kappa Distribution for Rainfall Frequency Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1