Light-matter correlations in Quantum Floquet engineering of cavity quantum materials

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2025-02-17 DOI:10.22331/q-2025-02-17-1633
Beatriz Pérez-González, Gloria Platero, Álvaro Gomez-León
{"title":"Light-matter correlations in Quantum Floquet engineering of cavity quantum materials","authors":"Beatriz Pérez-González, Gloria Platero, Álvaro Gomez-León","doi":"10.22331/q-2025-02-17-1633","DOIUrl":null,"url":null,"abstract":"Quantum Floquet engineering (QFE) seeks to generalize the control of quantum systems with classical external fields, widely known as Semi-Classical Floquet engineering (SCFE), to quantum fields. However, to faithfully capture the physics at arbitrary coupling, a gauge-invariant description of light-matter interaction in cavity-QED materials is required, which makes the Hamiltonian highly non-linear in photonic operators. We provide a non-perturbative truncation scheme of the Hamiltonian, which is valid or arbitrary coupling strength, and use it to investigate the role of light-matter correlations, which are absent in SCFE. We find that even in the high-frequency regime, light-matter correlations can be crucial, in particular for the topological properties of a system. As an example, we show that for a SSH chain coupled to a cavity, light-matter correlations break the original chiral symmetry of the chain, strongly affecting the robustness of its edge states. In addition, we show how light-matter correlations are imprinted in the photonic spectral function and discuss their relation with the topology of the bands.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"80 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-17-1633","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum Floquet engineering (QFE) seeks to generalize the control of quantum systems with classical external fields, widely known as Semi-Classical Floquet engineering (SCFE), to quantum fields. However, to faithfully capture the physics at arbitrary coupling, a gauge-invariant description of light-matter interaction in cavity-QED materials is required, which makes the Hamiltonian highly non-linear in photonic operators. We provide a non-perturbative truncation scheme of the Hamiltonian, which is valid or arbitrary coupling strength, and use it to investigate the role of light-matter correlations, which are absent in SCFE. We find that even in the high-frequency regime, light-matter correlations can be crucial, in particular for the topological properties of a system. As an example, we show that for a SSH chain coupled to a cavity, light-matter correlations break the original chiral symmetry of the chain, strongly affecting the robustness of its edge states. In addition, we show how light-matter correlations are imprinted in the photonic spectral function and discuss their relation with the topology of the bands.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs What exactly does Bekenstein bound? Local Purity Distillation in Quantum Systems: Exploring the Complementarity Between Purity and Entanglement PAC-learning of free-fermionic states is NP-hard Trade-off relations between measurement dependence and hiddenness for separable hidden variable models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1