Distributed landmark labeling for social networks

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Parallel and Distributed Computing Pub Date : 2025-02-13 DOI:10.1016/j.jpdc.2025.105057
Arda Şener, Hüsnü Yenigün, Kamer Kaya
{"title":"Distributed landmark labeling for social networks","authors":"Arda Şener,&nbsp;Hüsnü Yenigün,&nbsp;Kamer Kaya","doi":"10.1016/j.jpdc.2025.105057","DOIUrl":null,"url":null,"abstract":"<div><div>Distance queries are a fundamental part of many network analysis applications. They can be used to infer the closeness of two users in social networks, the relation between two sites in a web graph, or the importance of the interaction between two proteins or molecules. Being able to answer these queries rapidly has many benefits in the area of network analysis. Pruned Landmark Labeling (<span>Pll</span>) is a technique used to generate an index for a given graph that allows the shortest path queries to be completed in a fraction of the time when compared to a standard breadth-first or a depth-first search-based algorithm. Parallel Shortest-distance Labeling (<span>Psl</span>) reorganizes the steps of <span>Pll</span> for the multithreaded setting and is designed particularly for social networks for which the index sizes can be much larger than what a single server can store. Even for a medium-size, 5 million vertex graph, the index size can be more than 40 GB. This paper proposes a hybrid, shared- and distributed-memory algorithm, DPSL, by partitioning the input graph via a vertex separator. The proposed method improves both the parallel execution time and the maximum memory consumption by distributing both the data and the work across multiple nodes of a cluster. For instance, on a graph with 5M vertices and 150M edges, using 4 nodes, DPSL reduces the execution time and maximum memory consumption by 2.13× and 1.87×, respectively, compared to our improved implementation of <span>Psl</span>.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"200 ","pages":"Article 105057"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000243","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Distance queries are a fundamental part of many network analysis applications. They can be used to infer the closeness of two users in social networks, the relation between two sites in a web graph, or the importance of the interaction between two proteins or molecules. Being able to answer these queries rapidly has many benefits in the area of network analysis. Pruned Landmark Labeling (Pll) is a technique used to generate an index for a given graph that allows the shortest path queries to be completed in a fraction of the time when compared to a standard breadth-first or a depth-first search-based algorithm. Parallel Shortest-distance Labeling (Psl) reorganizes the steps of Pll for the multithreaded setting and is designed particularly for social networks for which the index sizes can be much larger than what a single server can store. Even for a medium-size, 5 million vertex graph, the index size can be more than 40 GB. This paper proposes a hybrid, shared- and distributed-memory algorithm, DPSL, by partitioning the input graph via a vertex separator. The proposed method improves both the parallel execution time and the maximum memory consumption by distributing both the data and the work across multiple nodes of a cluster. For instance, on a graph with 5M vertices and 150M edges, using 4 nodes, DPSL reduces the execution time and maximum memory consumption by 2.13× and 1.87×, respectively, compared to our improved implementation of Psl.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
期刊最新文献
Data quality management in big data: Strategies, tools, and educational implications IMI-GPU: Inverted multi-index for billion-scale approximate nearest neighbor search with GPUs Editorial Board Front Matter 1 - Full Title Page (regular issues)/Special Issue Title page (special issues) Distributed landmark labeling for social networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1