{"title":"Distributed landmark labeling for social networks","authors":"Arda Şener, Hüsnü Yenigün, Kamer Kaya","doi":"10.1016/j.jpdc.2025.105057","DOIUrl":null,"url":null,"abstract":"<div><div>Distance queries are a fundamental part of many network analysis applications. They can be used to infer the closeness of two users in social networks, the relation between two sites in a web graph, or the importance of the interaction between two proteins or molecules. Being able to answer these queries rapidly has many benefits in the area of network analysis. Pruned Landmark Labeling (<span>Pll</span>) is a technique used to generate an index for a given graph that allows the shortest path queries to be completed in a fraction of the time when compared to a standard breadth-first or a depth-first search-based algorithm. Parallel Shortest-distance Labeling (<span>Psl</span>) reorganizes the steps of <span>Pll</span> for the multithreaded setting and is designed particularly for social networks for which the index sizes can be much larger than what a single server can store. Even for a medium-size, 5 million vertex graph, the index size can be more than 40 GB. This paper proposes a hybrid, shared- and distributed-memory algorithm, DPSL, by partitioning the input graph via a vertex separator. The proposed method improves both the parallel execution time and the maximum memory consumption by distributing both the data and the work across multiple nodes of a cluster. For instance, on a graph with 5M vertices and 150M edges, using 4 nodes, DPSL reduces the execution time and maximum memory consumption by 2.13× and 1.87×, respectively, compared to our improved implementation of <span>Psl</span>.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"200 ","pages":"Article 105057"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000243","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Distance queries are a fundamental part of many network analysis applications. They can be used to infer the closeness of two users in social networks, the relation between two sites in a web graph, or the importance of the interaction between two proteins or molecules. Being able to answer these queries rapidly has many benefits in the area of network analysis. Pruned Landmark Labeling (Pll) is a technique used to generate an index for a given graph that allows the shortest path queries to be completed in a fraction of the time when compared to a standard breadth-first or a depth-first search-based algorithm. Parallel Shortest-distance Labeling (Psl) reorganizes the steps of Pll for the multithreaded setting and is designed particularly for social networks for which the index sizes can be much larger than what a single server can store. Even for a medium-size, 5 million vertex graph, the index size can be more than 40 GB. This paper proposes a hybrid, shared- and distributed-memory algorithm, DPSL, by partitioning the input graph via a vertex separator. The proposed method improves both the parallel execution time and the maximum memory consumption by distributing both the data and the work across multiple nodes of a cluster. For instance, on a graph with 5M vertices and 150M edges, using 4 nodes, DPSL reduces the execution time and maximum memory consumption by 2.13× and 1.87×, respectively, compared to our improved implementation of Psl.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.