Experimental investigation of tool wear and surface integrity using a large pulsed electron beam (LPEB) irradiated end-mill cutting tool for Ti-6Al-4 V

IF 6.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Journal of Manufacturing Processes Pub Date : 2025-02-18 DOI:10.1016/j.jmapro.2025.02.030
Sang Min Yang , Yun Seok Kang , Do Young Kim , Hyung Wook Park
{"title":"Experimental investigation of tool wear and surface integrity using a large pulsed electron beam (LPEB) irradiated end-mill cutting tool for Ti-6Al-4 V","authors":"Sang Min Yang ,&nbsp;Yun Seok Kang ,&nbsp;Do Young Kim ,&nbsp;Hyung Wook Park","doi":"10.1016/j.jmapro.2025.02.030","DOIUrl":null,"url":null,"abstract":"<div><div>In advanced industries such as automotive, aerospace, and biomedical, the Ti-6Al-4 V material is widely used owing to its superior mechanical properties. However, because of inadequate thermal properties, tool wear increases rapidly, leading to persistent problems with surface integrity. Therefore, tool wear needs to be enhanced while ensuring the surface integrity during the machining. This paper investigates the surface integrity of Ti-6Al-4 V using a large pulsed electron beam (LPEB) irradiated cutting tool, examining surface integrity from a multiscale (macro, and micro) perspective. The electron beam was irradiated on the cutting tool, and the characteristics analysis of the LPEB-irradiated cutting tool was conducted, including tool surface roughness and edge radius. The flank wear was measured to identify the effect of LPEB irradiation on wear evolution. Furthermore, the influence of the LPEB-irradiated cutting tools on the work material was analyzed compared to the non-irradiated cutting tools; the machined surface roughness was reduced by 13.6 %, the plastic deformation length was reduced by 41.0 %, microhardness was improved by 44.3 %, and the residual stress of the machined surface was reduced by 27.1 %, respectively. This result is caused by the improved surface qualities of the LPEB-irradiated cutting tool in terms of reduced tool surface roughness and increased edge radius. Moreover, the reduced flank wear may positively affect the enhancement of surface integrity.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"139 ","pages":"Pages 172-181"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612525001719","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In advanced industries such as automotive, aerospace, and biomedical, the Ti-6Al-4 V material is widely used owing to its superior mechanical properties. However, because of inadequate thermal properties, tool wear increases rapidly, leading to persistent problems with surface integrity. Therefore, tool wear needs to be enhanced while ensuring the surface integrity during the machining. This paper investigates the surface integrity of Ti-6Al-4 V using a large pulsed electron beam (LPEB) irradiated cutting tool, examining surface integrity from a multiscale (macro, and micro) perspective. The electron beam was irradiated on the cutting tool, and the characteristics analysis of the LPEB-irradiated cutting tool was conducted, including tool surface roughness and edge radius. The flank wear was measured to identify the effect of LPEB irradiation on wear evolution. Furthermore, the influence of the LPEB-irradiated cutting tools on the work material was analyzed compared to the non-irradiated cutting tools; the machined surface roughness was reduced by 13.6 %, the plastic deformation length was reduced by 41.0 %, microhardness was improved by 44.3 %, and the residual stress of the machined surface was reduced by 27.1 %, respectively. This result is caused by the improved surface qualities of the LPEB-irradiated cutting tool in terms of reduced tool surface roughness and increased edge radius. Moreover, the reduced flank wear may positively affect the enhancement of surface integrity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Manufacturing Processes
Journal of Manufacturing Processes ENGINEERING, MANUFACTURING-
CiteScore
10.20
自引率
11.30%
发文量
833
审稿时长
50 days
期刊介绍: The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.
期刊最新文献
In-situ alleviation of surface modifier passivation effects in silver nanoparticle laser sintering process Lattice infill strategies for topology optimisation towards achieving lightweight designs for additive manufacturing: Structural integrity, and manufacturing consideration Experimental investigation of tool wear and surface integrity using a large pulsed electron beam (LPEB) irradiated end-mill cutting tool for Ti-6Al-4 V Additive manufacturing of TiB2 particles enabled high-performance 316L with a unique core-shell melt pool structure Deformation prediction model for milling residual stresses in complex thin-walled parts with variable curvature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1