Additive manufacturing of TiB2 particles enabled high-performance 316L with a unique core-shell melt pool structure

IF 6.8 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Journal of Manufacturing Processes Pub Date : 2025-02-18 DOI:10.1016/j.jmapro.2025.02.036
Wengang Zhai , Wei Zhou , Yuan Yu , Sharon Mui Ling Nai
{"title":"Additive manufacturing of TiB2 particles enabled high-performance 316L with a unique core-shell melt pool structure","authors":"Wengang Zhai ,&nbsp;Wei Zhou ,&nbsp;Yuan Yu ,&nbsp;Sharon Mui Ling Nai","doi":"10.1016/j.jmapro.2025.02.036","DOIUrl":null,"url":null,"abstract":"<div><div>Although there have been studies reported on TiB<sub>2</sub> strengthened 316L via laser powder bed fusion (LPBF), none identified the decomposition of TiB<sub>2</sub> and the collaborative influence of titanium and boron on microstructure evolution. Here, we report a unique core-shell melt pool structure in 316L enabled by introducing 1 wt%, 2 wt% and 3 wt% TiB<sub>2</sub> particles through the LPBF process. In the LPBF-fabricated 316L-TiB<sub>2</sub> composites, the core at the centre of the melt pool contains ultrafine grains and twin boundaries while the edge features columnar grains. The TiB<sub>2</sub> particles undergo melting and decomposition in the steel matrix during the LPBF process as demonstrated using atom probe tomography (APT). Significant grain refinement (from 25.9 μm to about 1 μm) for LPBF-processed 316L was observed. The collaborative influence of Ti and B elements catalyses the creation of this unique core-shell structure. The LPBF-processed 316L-TiB<sub>2</sub> exhibits an excellent combination of high strength (yield strength: 858 MPa, ultimate tensile strength: 1095 MPa) and ductility (27%). Among the various particles evaluated, TiB<sub>2</sub> particles demonstrated superior efficiency over other ceramic particles in grain refinement and strength enhancement for 316L.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"139 ","pages":"Pages 144-155"},"PeriodicalIF":6.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S152661252500177X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Although there have been studies reported on TiB2 strengthened 316L via laser powder bed fusion (LPBF), none identified the decomposition of TiB2 and the collaborative influence of titanium and boron on microstructure evolution. Here, we report a unique core-shell melt pool structure in 316L enabled by introducing 1 wt%, 2 wt% and 3 wt% TiB2 particles through the LPBF process. In the LPBF-fabricated 316L-TiB2 composites, the core at the centre of the melt pool contains ultrafine grains and twin boundaries while the edge features columnar grains. The TiB2 particles undergo melting and decomposition in the steel matrix during the LPBF process as demonstrated using atom probe tomography (APT). Significant grain refinement (from 25.9 μm to about 1 μm) for LPBF-processed 316L was observed. The collaborative influence of Ti and B elements catalyses the creation of this unique core-shell structure. The LPBF-processed 316L-TiB2 exhibits an excellent combination of high strength (yield strength: 858 MPa, ultimate tensile strength: 1095 MPa) and ductility (27%). Among the various particles evaluated, TiB2 particles demonstrated superior efficiency over other ceramic particles in grain refinement and strength enhancement for 316L.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TiB2颗粒的增材制造使高性能316L具有独特的核-壳熔池结构
虽然已有研究报道TiB2激光粉末床熔融(LPBF)强化316L,但没有研究发现TiB2的分解以及钛和硼对微观组织演变的协同影响。在这里,我们报告了通过LPBF工艺引入1wt %, 2wt %和3wt %的TiB2颗粒,在316L中实现了独特的核-壳熔池结构。在lpbf制备的316L-TiB2复合材料中,熔池中心的核心包含超细晶粒和孪晶界,而边缘则以柱状晶粒为主。原子探针断层扫描(APT)显示,在LPBF过程中,TiB2颗粒在钢基体中熔化和分解。观察到lpbf处理的316L晶粒细化明显(从25.9 μm到约1 μm)。钛和B元素的协同作用催化了这种独特的核壳结构的形成。lpbf处理的316L-TiB2具有高强度(屈服强度:858 MPa,极限抗拉强度:1095 MPa)和塑性(27%)的优异组合。结果表明,TiB2颗粒在316L的晶粒细化和强度增强方面优于其他颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Manufacturing Processes
Journal of Manufacturing Processes ENGINEERING, MANUFACTURING-
CiteScore
10.20
自引率
11.30%
发文量
833
审稿时长
50 days
期刊介绍: The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.
期刊最新文献
Effect of ultrasonic vibration on residual stress and microstructure in resistance spot welding of aluminum/steel dissimilar materials Effect of cooling time and residual layer of Al-Si coating on nugget growth and weldability in resistance spot welding of 1.5-GPa-grade 22MnB5 press hardened steels Development of damage energy based process signature for machined surface quality in CFRP cutting Microstructure and micro-mechanical property evaluation of high-aspect-ratio micro-ribs constructed via elliptical vibration chiseling Advances in alternative spot-joining technologies for difficult-to-weld materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1