Anh Hoang , Matthew Grasinger , Easir Arafat Papon , Amanda Koh
{"title":"Exploring the complex deformation behavior of liquid metal polymer composites through experimental and novel computational approaches","authors":"Anh Hoang , Matthew Grasinger , Easir Arafat Papon , Amanda Koh","doi":"10.1016/j.compositesb.2025.112257","DOIUrl":null,"url":null,"abstract":"<div><div>Unique among traditional fillers, the metallically conductive liquid metal galinstan has emerged as an inherently deformable alternative for polymer composites. Galinstan exhibits high electrical conductivity with liquid-like flow, which sets it apart from the solid metals and ceramics typically used to impart electrical behavior to polymers. Upon exposure to atmospheric oxygen, galinstan forms a solid oxide shell that adds mechanical complexity when blended with polymers to create liquid metal polymer composites (LMPCs). This study investigates the mechanical behavior of LMPCs under tension, compression, and torsion as a function of LM droplet size and loading. Experimental analysis and computational modeling reveal distinct behaviors in LMPCs depending on the applied force and droplet characteristics that do not follow the classic composite models like Eshelby theory or more recent, updated versions thereof. Despite the large modulus difference between the LM and oxide shell, focusing exclusively on individual droplet mechanics overlooks the importance of surface energy dynamics within the system. By incorporating interfacial energy into a novel model, the origins of the LMPC mechanical response under deformation were illustrated. Our findings contribute to a broader understanding of composite materials with implications for soft robotics, where material response to various deformations is crucial for functionality.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"296 ","pages":"Article 112257"},"PeriodicalIF":12.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825001477","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Unique among traditional fillers, the metallically conductive liquid metal galinstan has emerged as an inherently deformable alternative for polymer composites. Galinstan exhibits high electrical conductivity with liquid-like flow, which sets it apart from the solid metals and ceramics typically used to impart electrical behavior to polymers. Upon exposure to atmospheric oxygen, galinstan forms a solid oxide shell that adds mechanical complexity when blended with polymers to create liquid metal polymer composites (LMPCs). This study investigates the mechanical behavior of LMPCs under tension, compression, and torsion as a function of LM droplet size and loading. Experimental analysis and computational modeling reveal distinct behaviors in LMPCs depending on the applied force and droplet characteristics that do not follow the classic composite models like Eshelby theory or more recent, updated versions thereof. Despite the large modulus difference between the LM and oxide shell, focusing exclusively on individual droplet mechanics overlooks the importance of surface energy dynamics within the system. By incorporating interfacial energy into a novel model, the origins of the LMPC mechanical response under deformation were illustrated. Our findings contribute to a broader understanding of composite materials with implications for soft robotics, where material response to various deformations is crucial for functionality.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.