Influence of strand size and morphology on the mechanical performance of recycled CF/PEKK composites: Harnessing waste for aerospace secondary load-bearing applications
Yağız Özbek , Abdulrahman Al-Nadhari , Volkan Eskizeybek , Mehmet Yıldız , Hatice Sinem Şaş
{"title":"Influence of strand size and morphology on the mechanical performance of recycled CF/PEKK composites: Harnessing waste for aerospace secondary load-bearing applications","authors":"Yağız Özbek , Abdulrahman Al-Nadhari , Volkan Eskizeybek , Mehmet Yıldız , Hatice Sinem Şaş","doi":"10.1016/j.compositesb.2025.112232","DOIUrl":null,"url":null,"abstract":"<div><div>The flexibility and precision of automated fiber placement (AFP) have made it a standard methodology in the aviation industry. However, the use of continuous slit tapes along component lengths generates significant waste. This waste presents an opportunity for recycling into secondary load-bearing structures, particularly in applications where components are not subjected to extreme working conditions. In this study, carbon fiber-reinforced polyetherketoneketone (CF/PEKK) strands are recycled into randomly oriented strand (ROS) panels using a cost-effective, vacuum-assisted hot press process while maintaining aerospace-quality standards. Both long and short strand lengths, as well as shredded strands mimicking real-life industrial waste, are analyzed for their mechanical performance and geometric stability. Mechanical properties of the recycled CF/PEKK composites are evaluated through tensile, shear, compression, Izod impact, and dynamic mechanical analysis (DMA), using digital image correlation (DIC) for precise measurements. Additionally, topological 3D scanning is used to assess the geometric stability of the panels. Results indicate that short strands offer superior mechanical properties, while shredded strands perform comparably. This study makes a unique contribution by demonstrating the effective recycling of slit tape waste into high-performance composite materials, advancing sustainable practices in aerospace applications.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"296 ","pages":"Article 112232"},"PeriodicalIF":12.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825001222","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The flexibility and precision of automated fiber placement (AFP) have made it a standard methodology in the aviation industry. However, the use of continuous slit tapes along component lengths generates significant waste. This waste presents an opportunity for recycling into secondary load-bearing structures, particularly in applications where components are not subjected to extreme working conditions. In this study, carbon fiber-reinforced polyetherketoneketone (CF/PEKK) strands are recycled into randomly oriented strand (ROS) panels using a cost-effective, vacuum-assisted hot press process while maintaining aerospace-quality standards. Both long and short strand lengths, as well as shredded strands mimicking real-life industrial waste, are analyzed for their mechanical performance and geometric stability. Mechanical properties of the recycled CF/PEKK composites are evaluated through tensile, shear, compression, Izod impact, and dynamic mechanical analysis (DMA), using digital image correlation (DIC) for precise measurements. Additionally, topological 3D scanning is used to assess the geometric stability of the panels. Results indicate that short strands offer superior mechanical properties, while shredded strands perform comparably. This study makes a unique contribution by demonstrating the effective recycling of slit tape waste into high-performance composite materials, advancing sustainable practices in aerospace applications.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.