{"title":"Effect of belite-rich cement on the micro/macro properties and sustainability of slag–oyster powder–cement-based ternary materials","authors":"Bo Yang , Yi Han , Zhengyi Kong , Xiao-Yong Wang","doi":"10.1016/j.conbuildmat.2025.140460","DOIUrl":null,"url":null,"abstract":"<div><div>Against the backdrop of global urbanization, the production of cement materials continues to increase. The need to meet development needs also raises concerns about environmental pollution. The cement industry is confronting an increasingly serious challenge of reducing carbon emissions. Using supplementary cementitious materials to replace part of the cement is a direct way to reduce carbon dioxide emissions. In this study, ternary blended cement (TBC) was prepared using blast furnace slag (BFS), oyster powder (OSP), and belite-rich cement on the micro/macroscale, and ternary slag–oyster powder–cement-based materials were prepared by partially or completely replacing the Ordinary Portland cement (OPC) in TBC with more environmentally belite-rich cement (BRC).The surface resistivity, and ultrasonic pulse velocity (UPV), mechanical properties of the hybrid samples were assessed through macroscopic experiments. Microscopic characterization of the samples included heat of hydration, thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Finally, the sustainability of CO<sub>2</sub> emissions per unit volume and strength of the mixed samples was assessed. The results indicate that substituting BRC for OPC can effectively reduce the cumulative hydration heat and surface resistivity of the mixed sample. At 90 d, a BRC substitution ratio of one-third yields the highest compressive strength, while complete replacement results in the lowest compressive strength. BRC substitution decreases the CO<sub>2</sub> emissions per unit volume of the mixed sample. The lowest CO<sub>2</sub> emissions per unit strength occur with a one-third BRC replacement ratio, which is identified as the optimal substitution level.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"468 ","pages":"Article 140460"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061825006087","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Against the backdrop of global urbanization, the production of cement materials continues to increase. The need to meet development needs also raises concerns about environmental pollution. The cement industry is confronting an increasingly serious challenge of reducing carbon emissions. Using supplementary cementitious materials to replace part of the cement is a direct way to reduce carbon dioxide emissions. In this study, ternary blended cement (TBC) was prepared using blast furnace slag (BFS), oyster powder (OSP), and belite-rich cement on the micro/macroscale, and ternary slag–oyster powder–cement-based materials were prepared by partially or completely replacing the Ordinary Portland cement (OPC) in TBC with more environmentally belite-rich cement (BRC).The surface resistivity, and ultrasonic pulse velocity (UPV), mechanical properties of the hybrid samples were assessed through macroscopic experiments. Microscopic characterization of the samples included heat of hydration, thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Finally, the sustainability of CO2 emissions per unit volume and strength of the mixed samples was assessed. The results indicate that substituting BRC for OPC can effectively reduce the cumulative hydration heat and surface resistivity of the mixed sample. At 90 d, a BRC substitution ratio of one-third yields the highest compressive strength, while complete replacement results in the lowest compressive strength. BRC substitution decreases the CO2 emissions per unit volume of the mixed sample. The lowest CO2 emissions per unit strength occur with a one-third BRC replacement ratio, which is identified as the optimal substitution level.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.