Xulong Qin , Zhiwei Xue , Kang Hui Lim , Jiaheng Han , Claudia Li , Xinyu Wang , Xiuxia Meng , Xiaobin Wang , Yuesong Shen , Naitao Yang , Sibudjing Kawi
{"title":"Highly selective production of green syngas by methanol decomposition over steam activated Ni/NaX zeolite catalyst","authors":"Xulong Qin , Zhiwei Xue , Kang Hui Lim , Jiaheng Han , Claudia Li , Xinyu Wang , Xiuxia Meng , Xiaobin Wang , Yuesong Shen , Naitao Yang , Sibudjing Kawi","doi":"10.1016/j.energy.2025.135009","DOIUrl":null,"url":null,"abstract":"<div><div>Production of syngas from green energy carrier methanol is of great significance to reform the traditional industry of synthetic chemistry. In this paper, we propose the strategy to tune the catalytic behavior of Ni-based catalyst for highly selective methanol decomposition into green syngas by combining the nano-confined effect of zeolite and the regulatory effect of steam on the structure of Ni/NaX zeolite catalyst. The optimal Ni/NaX zeolite catalyst achieves the H<sub>2</sub> selectivity of 98.8 %, the H<sub>2</sub>/CO molar ratio of 2, high coking resistance and superior stability at 340 °C. The coexistence of mesopores and micropores in NaX zeolite and the strong metal-support interaction are considered as factors for the elevated catalytic performance. An optimal fraction of Ni<sup>0</sup>, Ni<sup>2+</sup> and Ni<sup>3+</sup> in Ni/NaX zeolite catalyst is found to significantly contribute to the catalyst's high selectivity and activity. Steam acts as promoter that tunes catalytic behavior of Ni/NaX zeolite catalyst. With the presence of steam, the amount of both Lewis and Brønsted acids decreases, and the coke deposition reduces. This also accelerates the desorption of CO, enhances activity and inhibits both the methanation and Boudouard reaction. The current work provides a new idea for developing effective catalysts and optimizing reaction processes.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"319 ","pages":"Article 135009"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225006516","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Production of syngas from green energy carrier methanol is of great significance to reform the traditional industry of synthetic chemistry. In this paper, we propose the strategy to tune the catalytic behavior of Ni-based catalyst for highly selective methanol decomposition into green syngas by combining the nano-confined effect of zeolite and the regulatory effect of steam on the structure of Ni/NaX zeolite catalyst. The optimal Ni/NaX zeolite catalyst achieves the H2 selectivity of 98.8 %, the H2/CO molar ratio of 2, high coking resistance and superior stability at 340 °C. The coexistence of mesopores and micropores in NaX zeolite and the strong metal-support interaction are considered as factors for the elevated catalytic performance. An optimal fraction of Ni0, Ni2+ and Ni3+ in Ni/NaX zeolite catalyst is found to significantly contribute to the catalyst's high selectivity and activity. Steam acts as promoter that tunes catalytic behavior of Ni/NaX zeolite catalyst. With the presence of steam, the amount of both Lewis and Brønsted acids decreases, and the coke deposition reduces. This also accelerates the desorption of CO, enhances activity and inhibits both the methanation and Boudouard reaction. The current work provides a new idea for developing effective catalysts and optimizing reaction processes.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.