Online estimation of negative electrode overpotential and detection of lithium plating of batteries using electrochemistry-driven Kalman filter closed-loop framework
Shaochun Xu , Chao Lyu , Dazhi Yang , Gareth Hinds , Tu Lan , Stefano Sfarra , Hai Zhang , Weilin Luo , Dongxu Shen , Miao Bai
{"title":"Online estimation of negative electrode overpotential and detection of lithium plating of batteries using electrochemistry-driven Kalman filter closed-loop framework","authors":"Shaochun Xu , Chao Lyu , Dazhi Yang , Gareth Hinds , Tu Lan , Stefano Sfarra , Hai Zhang , Weilin Luo , Dongxu Shen , Miao Bai","doi":"10.1016/j.apenergy.2025.125487","DOIUrl":null,"url":null,"abstract":"<div><div>Diagnosing lithium plating in batteries can be achieved by monitoring the polarity of the negative electrode overpotential (NEO), which cannot be directly measured for commercial batteries. The electrochemical models have the ability to calculate the NEO, however, existing methods cannot guarantee estimation accuracy and computational efficiency simultaneously under complex working conditions, limiting their practicality. To address the problem, this work proposed a novel closed-loop NEO estimation framework that combines a simplified electrochemical model with a filtering algorithm. First, a parameter-corrected SP+ model with practical applicability under high C-rate conditions is built. Following that, a closed-loop NEO estimation framework involving the extended Kalman filtering (EKF) is constructed, in that, NEO is treated as the only state variable and adjusted by terminal voltage observations. Then the proposed method is validated experimentally by measuring NEO using a 50-Ah LFP battery with a referenced electrode. Results showed that the accuracy, efficiency, convergence, and robustness can all be guaranteed benefiting from the simplicity of the electrochemical model and the adaptiveness of the EKF, and the proposed method is well-suited for online monitoring lithium plating in battery energy storage applications.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"385 ","pages":"Article 125487"},"PeriodicalIF":10.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030626192500217X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Diagnosing lithium plating in batteries can be achieved by monitoring the polarity of the negative electrode overpotential (NEO), which cannot be directly measured for commercial batteries. The electrochemical models have the ability to calculate the NEO, however, existing methods cannot guarantee estimation accuracy and computational efficiency simultaneously under complex working conditions, limiting their practicality. To address the problem, this work proposed a novel closed-loop NEO estimation framework that combines a simplified electrochemical model with a filtering algorithm. First, a parameter-corrected SP+ model with practical applicability under high C-rate conditions is built. Following that, a closed-loop NEO estimation framework involving the extended Kalman filtering (EKF) is constructed, in that, NEO is treated as the only state variable and adjusted by terminal voltage observations. Then the proposed method is validated experimentally by measuring NEO using a 50-Ah LFP battery with a referenced electrode. Results showed that the accuracy, efficiency, convergence, and robustness can all be guaranteed benefiting from the simplicity of the electrochemical model and the adaptiveness of the EKF, and the proposed method is well-suited for online monitoring lithium plating in battery energy storage applications.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.