Yue Zhao , Xiaoqian Hu , Jian Ren , Chunli Song , Yang Sun
{"title":"Ultrasound-assisted preparation of wax-based composite gelator: Structural characterisation, in vitro antioxidant activity and application in oleogels","authors":"Yue Zhao , Xiaoqian Hu , Jian Ren , Chunli Song , Yang Sun","doi":"10.1016/j.ultsonch.2025.107253","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the development of zero-trans fatty acid products instead of traditional hydrogenated and high-unsaturated fatty acid animal and vegetable oils has been an increasing interest in the field of food. This paper focused on the ultrasound-assisted preparation of a novel wax-based composite gelator loaded with natural antioxidant to prepare oleogels with good storage oxidation stability. The preparation of the wax-based composite gelator was to first form the anthocyanin (ACNs) and soyabean lecithin (SL) complex, and then homogenized with beeswax (BW). A complex maximum association efficiency of 86.43 % was achieved when the combination was performed for 50 min at 40 °C and 270 W ultrasonic power, and exhibited higher lipophilicity. Moreover, structural analysis results revealed that ultrasonic-assisted treatment accelerated the formation of ACNs and SL ultrasonic complexes (ASUC) by the hydrogen bonding. The results of gelators indicated the ASUC-BW composite gelator showed the highest ACNs embedding rate of 72.91 % and better antioxidant activity. XRD analysis and thermogravimetric analysis demonstrated that ASUC-BW composite gelator maintained β′ crystal structure and had higher thermal stability due to physical interactions between ASUC and beeswax. Accelerated storage tests at 60 °C revealed that oleogels prepared by ASUC-BW composite gelator (ALO) had significantly lower peroxide values (PV) (14.0 mmol/kg) and thiobarbituric acid reactive substances (TBARS) (1.8 mg/kg). Overall, this paper demonstrates ultrasonic-assisted treatment is an effective way to improve dispersion and availability of ANCs in food rich in oil and can be further applied to developing novel high stability fatty food systems.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"114 ","pages":"Article 107253"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135041772500032X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the development of zero-trans fatty acid products instead of traditional hydrogenated and high-unsaturated fatty acid animal and vegetable oils has been an increasing interest in the field of food. This paper focused on the ultrasound-assisted preparation of a novel wax-based composite gelator loaded with natural antioxidant to prepare oleogels with good storage oxidation stability. The preparation of the wax-based composite gelator was to first form the anthocyanin (ACNs) and soyabean lecithin (SL) complex, and then homogenized with beeswax (BW). A complex maximum association efficiency of 86.43 % was achieved when the combination was performed for 50 min at 40 °C and 270 W ultrasonic power, and exhibited higher lipophilicity. Moreover, structural analysis results revealed that ultrasonic-assisted treatment accelerated the formation of ACNs and SL ultrasonic complexes (ASUC) by the hydrogen bonding. The results of gelators indicated the ASUC-BW composite gelator showed the highest ACNs embedding rate of 72.91 % and better antioxidant activity. XRD analysis and thermogravimetric analysis demonstrated that ASUC-BW composite gelator maintained β′ crystal structure and had higher thermal stability due to physical interactions between ASUC and beeswax. Accelerated storage tests at 60 °C revealed that oleogels prepared by ASUC-BW composite gelator (ALO) had significantly lower peroxide values (PV) (14.0 mmol/kg) and thiobarbituric acid reactive substances (TBARS) (1.8 mg/kg). Overall, this paper demonstrates ultrasonic-assisted treatment is an effective way to improve dispersion and availability of ANCs in food rich in oil and can be further applied to developing novel high stability fatty food systems.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.