High-frequency ultrasound induced the preparation of oxidized low density lipoprotein

IF 8.7 1区 化学 Q1 ACOUSTICS Ultrasonics Sonochemistry Pub Date : 2025-03-05 DOI:10.1016/j.ultsonch.2025.107303
Yuanmin Li , Wanyue Yang , Xinyi Zhang , Jingjing Ba , Han Yang , Wen Wang , Ke Zhang , Ze Yang , Hui Liang , Zihan Li , Muthupandian Ashokkumar , Jiguo Zhang , Zhiliang Gao , Yang Yu
{"title":"High-frequency ultrasound induced the preparation of oxidized low density lipoprotein","authors":"Yuanmin Li ,&nbsp;Wanyue Yang ,&nbsp;Xinyi Zhang ,&nbsp;Jingjing Ba ,&nbsp;Han Yang ,&nbsp;Wen Wang ,&nbsp;Ke Zhang ,&nbsp;Ze Yang ,&nbsp;Hui Liang ,&nbsp;Zihan Li ,&nbsp;Muthupandian Ashokkumar ,&nbsp;Jiguo Zhang ,&nbsp;Zhiliang Gao ,&nbsp;Yang Yu","doi":"10.1016/j.ultsonch.2025.107303","DOIUrl":null,"url":null,"abstract":"<div><div>Foam cells have been frequently used in studies related to atherosclerosis. Traditional methods for inducing oxidized low-density lipoprotein (oxLDL) involve copper ion (Cu<sup>2+</sup>) treatment, which has inherent limitations such as prolonged oxidation times and residual copper ions. This study explored high-frequency ultrasound (400 kHz) as an alternative method for LDL oxidization. The findings demonstrated that high-frequency ultrasound-oxidized LDL (U-oxLDL) exhibited no significant differences compared to copper-oxidized LDL (Cu-oxLDL) in terms of electrophoretic mobility, foam cell morphology, lipid content, and cholesterol transport proteins. Additionally, lipidomic analysis revealed that U-oxLDL was more comparable to native LDL (N-LDL). Transcriptomic profiling of bone marrow-derived macrophages (BMDMs) treated with oxLDL showed that the gene expression patterns of BMDM foam cells treated with U-oxLDL were over 90 % consistent with those treated with Cu-oxLDL. Therefore, high-frequency ultrasound oxidation method represents a green and efficient strategy for oxLDL preparation, offering potential advantages for advancing atherosclerosis research.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"115 ","pages":"Article 107303"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725000823","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Foam cells have been frequently used in studies related to atherosclerosis. Traditional methods for inducing oxidized low-density lipoprotein (oxLDL) involve copper ion (Cu2+) treatment, which has inherent limitations such as prolonged oxidation times and residual copper ions. This study explored high-frequency ultrasound (400 kHz) as an alternative method for LDL oxidization. The findings demonstrated that high-frequency ultrasound-oxidized LDL (U-oxLDL) exhibited no significant differences compared to copper-oxidized LDL (Cu-oxLDL) in terms of electrophoretic mobility, foam cell morphology, lipid content, and cholesterol transport proteins. Additionally, lipidomic analysis revealed that U-oxLDL was more comparable to native LDL (N-LDL). Transcriptomic profiling of bone marrow-derived macrophages (BMDMs) treated with oxLDL showed that the gene expression patterns of BMDM foam cells treated with U-oxLDL were over 90 % consistent with those treated with Cu-oxLDL. Therefore, high-frequency ultrasound oxidation method represents a green and efficient strategy for oxLDL preparation, offering potential advantages for advancing atherosclerosis research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高频超声诱导制备氧化低密度脂蛋白
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
期刊最新文献
High-frequency ultrasound induced the preparation of oxidized low density lipoprotein Ultrasound-assisted preparation of shikonin-loaded emulsions for the treatment of bacterial infections Sustainable extraction of phytochemicals from Mentha arvensis using supramolecular eutectic solvent via microwave Irradiation: Unveiling insights with CatBoost-Driven feature analysis Thermosonication enhanced the bioactive, antioxidant, and flavor attributes of freshly squeezed tomato juice Corrigendum to “Ultrasound-assisted low-sodium salt curing to modify the quality characteristics of beef for aging” [Ultrason. Sonochem. 111 (2024) 107134]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1