Diffusion and retention of Co2+ and Zn2+ in compacted homocationic forms of illite: Role of the electrical double layer

IF 3.1 3区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Applied Geochemistry Pub Date : 2025-02-01 DOI:10.1016/j.apgeochem.2025.106312
Dimitra Zerva , Martin A. Glaus , John L. Provis , Sergey V. Churakov
{"title":"Diffusion and retention of Co2+ and Zn2+ in compacted homocationic forms of illite: Role of the electrical double layer","authors":"Dimitra Zerva ,&nbsp;Martin A. Glaus ,&nbsp;John L. Provis ,&nbsp;Sergey V. Churakov","doi":"10.1016/j.apgeochem.2025.106312","DOIUrl":null,"url":null,"abstract":"<div><div>Surface diffusion of cationic species has frequently been postulated to explain the results of diffusion studies in compacted clay minerals and clay rocks. However, the underlying mechanism of this process is not well understood, and the factors controlling the diffusive flux are not yet satisfactorily quantified. In this study, the role of ion-specific molecular interactions in the electric double layer formed at the clay mineral-fluid interface is investigated, particularly their effect on the diffusive transport of <sup>57</sup>Co<sup>2+</sup> and <sup>65</sup>Zn<sup>2+</sup> tracers. To this end, in-diffusion experiments were conducted at different background electrolyte concentrations in compacted illite with Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> and Cs<sup>+</sup> forms. The alkali cations in this series have decreasing hydration enthalpy (<span><math><mrow><msub><mrow><mo>Δ</mo><mi>H</mi></mrow><mrow><mi>h</mi><mi>y</mi><mi>d</mi></mrow></msub></mrow></math></span>) and an increasing effective hydrated ion radius. The diffusion data were interpreted using the “two site protolysis non electrostatic surface complexation/electrical double layer” (2SPNE SC/EDL) model. The diffusion and sorption behaviour of <sup>57</sup>Co<sup>2+</sup> and <sup>65</sup>Zn<sup>2+</sup> in various background electrolyte concentrations and homoionic forms of illite was compared in terms of the effective diffusion coefficient <em>D</em><sub><em>e</em></sub> and the sorption distribution coefficient <em>R</em><sub><em>d</em></sub>. The extent of surface diffusion was assessed via surface diffusion ratio (<em>φ</em>). The results suggest that <span><math><mrow><msub><mrow><mo>Δ</mo><mi>H</mi></mrow><mrow><mi>h</mi><mi>y</mi><mi>d</mi></mrow></msub></mrow></math></span> of ions is a critical factor controlling surface charge neutralisation, and consequently the distribution of the mobile species between the diffuse layer near the mineral surface and the bulk-like water in macroscopic pores. Although <sup>65</sup>Zn<sup>2+</sup> has higher <em>R</em><sub><em>d</em></sub> values compared to <sup>57</sup>Co<sup>2+</sup>, the surface diffusion phenomenon is equally relevant for both tracers studied in this work. For the 0.03 M and 0.1 M background electrolytes, <em>φ</em> follows the order <span><math><mrow><mi>L</mi><mi>i</mi><mo>≈</mo><mi>N</mi><mi>a</mi><mo>&gt;</mo><mi>K</mi><mo>&gt;</mo><mi>C</mi><mi>s</mi></mrow></math></span>, while in 0.5 M electrolyte solution the contribution of surface diffusion is negligible in most of the homocationic forms.</div></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"181 ","pages":"Article 106312"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292725000356","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Surface diffusion of cationic species has frequently been postulated to explain the results of diffusion studies in compacted clay minerals and clay rocks. However, the underlying mechanism of this process is not well understood, and the factors controlling the diffusive flux are not yet satisfactorily quantified. In this study, the role of ion-specific molecular interactions in the electric double layer formed at the clay mineral-fluid interface is investigated, particularly their effect on the diffusive transport of 57Co2+ and 65Zn2+ tracers. To this end, in-diffusion experiments were conducted at different background electrolyte concentrations in compacted illite with Li+, Na+, K+ and Cs+ forms. The alkali cations in this series have decreasing hydration enthalpy (ΔHhyd) and an increasing effective hydrated ion radius. The diffusion data were interpreted using the “two site protolysis non electrostatic surface complexation/electrical double layer” (2SPNE SC/EDL) model. The diffusion and sorption behaviour of 57Co2+ and 65Zn2+ in various background electrolyte concentrations and homoionic forms of illite was compared in terms of the effective diffusion coefficient De and the sorption distribution coefficient Rd. The extent of surface diffusion was assessed via surface diffusion ratio (φ). The results suggest that ΔHhyd of ions is a critical factor controlling surface charge neutralisation, and consequently the distribution of the mobile species between the diffuse layer near the mineral surface and the bulk-like water in macroscopic pores. Although 65Zn2+ has higher Rd values compared to 57Co2+, the surface diffusion phenomenon is equally relevant for both tracers studied in this work. For the 0.03 M and 0.1 M background electrolytes, φ follows the order LiNa>K>Cs, while in 0.5 M electrolyte solution the contribution of surface diffusion is negligible in most of the homocationic forms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Geochemistry
Applied Geochemistry 地学-地球化学与地球物理
CiteScore
6.10
自引率
8.80%
发文量
272
审稿时长
65 days
期刊介绍: Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application. Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.
期刊最新文献
Microbial influence on fast-growing iron oxyhydroxide-based speleothems in the acidic environment of Sitarjevec mine, Slovenia Destination of metals transported by hydrocarbon fluids in lead-zinc mineralization of the ediacaran strata in the central Sichuan Basin, China Thermally-induced release of arsenic from minerals and phases relevant to polluted natural systems affected by wildfires Editorial Board Monsoonal rainfall initiates autochthonous alteration of dissolved organic matter composition in Indian groundwaters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1