{"title":"Effect of work function on dust charging and dynamics on airless celestial body","authors":"R.H. Quan, Z.G. Liu, Z.Y. Song","doi":"10.1016/j.pss.2025.106065","DOIUrl":null,"url":null,"abstract":"<div><div>Charged dust on the surface of airless celestial bodies, such as the Moon and asteroids, poses a threat to space missions. Further research into charged dust is essential for the success of future space missions. In this study, we investigated the charging and dynamics of dust particles by examining different work functions. By integrating the photoelectron energy distribution function over four different work functions, we evaluated the variations in photoelectron density within the dust charge environment caused by changes in the work function. Using the photoelectron density corresponding to each work function, we solved the dust charging and dynamic equations for each type of dust under two different gravitational acceleration values. The results revealed that dust with a lower work function reaches higher equilibrium states, though it takes longer to achieve these states. These equilibrium states include charging currents, charge numbers, and levitation heights. The results also showed that equilibrium states have an inverse relationship with the work functions of dust particles as the solar zenith angle (SZA) varies from 0°to 90°, displaying consistent trends under different gravitational accelerations. Additionally, we found that dust particles could not levitate stably at a critical SZA, with this critical SZA following the same pattern as that of the work function. These findings could inform the design of dust mitigation strategies for future space missions, enhancing the safety and longevity of spacecraft operating on airless celestial bodies.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"258 ","pages":"Article 106065"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063325000327","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Charged dust on the surface of airless celestial bodies, such as the Moon and asteroids, poses a threat to space missions. Further research into charged dust is essential for the success of future space missions. In this study, we investigated the charging and dynamics of dust particles by examining different work functions. By integrating the photoelectron energy distribution function over four different work functions, we evaluated the variations in photoelectron density within the dust charge environment caused by changes in the work function. Using the photoelectron density corresponding to each work function, we solved the dust charging and dynamic equations for each type of dust under two different gravitational acceleration values. The results revealed that dust with a lower work function reaches higher equilibrium states, though it takes longer to achieve these states. These equilibrium states include charging currents, charge numbers, and levitation heights. The results also showed that equilibrium states have an inverse relationship with the work functions of dust particles as the solar zenith angle (SZA) varies from 0°to 90°, displaying consistent trends under different gravitational accelerations. Additionally, we found that dust particles could not levitate stably at a critical SZA, with this critical SZA following the same pattern as that of the work function. These findings could inform the design of dust mitigation strategies for future space missions, enhancing the safety and longevity of spacecraft operating on airless celestial bodies.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research