Development and validation of a graphene quantum dot-based sensor for abacavir quantification via fluorescence quenching

IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Analytical biochemistry Pub Date : 2025-02-14 DOI:10.1016/j.ab.2025.115817
Ali Alqahtani , Taha Alqahtani , Adel Al Fatease , Ahmed A. Almrasy
{"title":"Development and validation of a graphene quantum dot-based sensor for abacavir quantification via fluorescence quenching","authors":"Ali Alqahtani ,&nbsp;Taha Alqahtani ,&nbsp;Adel Al Fatease ,&nbsp;Ahmed A. Almrasy","doi":"10.1016/j.ab.2025.115817","DOIUrl":null,"url":null,"abstract":"<div><div>Human immunodeficiency virus (HIV) is a global health concern, and the development of effective methods for the detection and quantification of antiretroviral drugs is crucial for monitoring therapeutic efficacy and patient compliance. Herein, we present a novel approach utilizing graphene quantum dots (GQDs) for the determination of abacavir, a widely used nucleoside reverse transcriptase inhibitor in the treatment of HIV. The sensing mechanism was investigated through Stern-Volmer analysis, thermodynamics studies, and density functional theory calculations, which revealed the strong binding interactions between GQDs and abacavir <em>via</em> a static quenching process. Factors affecting the analytical performance, such as pH, GQDs concentration, and incubation time, were systematically optimized to achieve a linear detection range of 100–1000 ng/mL with a low detection limit of 17.49 ng/mL. The method was validated in accordance with ICH guidelines demonstrating excellent linearity, accuracy, precision, robustness and selectivity making it suitable for the quantification of abacavir in pharmaceutical formulations and biological samples. The method also demonstrated higher sensitivity and more environmentally friendly characteristics when compared to previously reported chromatographic techniques, showcasing the potential of GQDs as a superior alternative for the traditional detection approaches of pharmaceutical compounds.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"701 ","pages":"Article 115817"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269725000557","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Human immunodeficiency virus (HIV) is a global health concern, and the development of effective methods for the detection and quantification of antiretroviral drugs is crucial for monitoring therapeutic efficacy and patient compliance. Herein, we present a novel approach utilizing graphene quantum dots (GQDs) for the determination of abacavir, a widely used nucleoside reverse transcriptase inhibitor in the treatment of HIV. The sensing mechanism was investigated through Stern-Volmer analysis, thermodynamics studies, and density functional theory calculations, which revealed the strong binding interactions between GQDs and abacavir via a static quenching process. Factors affecting the analytical performance, such as pH, GQDs concentration, and incubation time, were systematically optimized to achieve a linear detection range of 100–1000 ng/mL with a low detection limit of 17.49 ng/mL. The method was validated in accordance with ICH guidelines demonstrating excellent linearity, accuracy, precision, robustness and selectivity making it suitable for the quantification of abacavir in pharmaceutical formulations and biological samples. The method also demonstrated higher sensitivity and more environmentally friendly characteristics when compared to previously reported chromatographic techniques, showcasing the potential of GQDs as a superior alternative for the traditional detection approaches of pharmaceutical compounds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical biochemistry
Analytical biochemistry 生物-分析化学
CiteScore
5.70
自引率
0.00%
发文量
283
审稿时长
44 days
期刊介绍: The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field. The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology. The journal has been particularly active in: -Analytical techniques for biological molecules- Aptamer selection and utilization- Biosensors- Chromatography- Cloning, sequencing and mutagenesis- Electrochemical methods- Electrophoresis- Enzyme characterization methods- Immunological approaches- Mass spectrometry of proteins and nucleic acids- Metabolomics- Nano level techniques- Optical spectroscopy in all its forms. The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.
期刊最新文献
Development and validation of a graphene quantum dot-based sensor for abacavir quantification via fluorescence quenching Simultaneous analysis of 7 key mevalonate pathway intermediates using liquid chromatography-orbitrap mass spectrometry. Editorial Board Screening and comparative study of four anti-PEDV candidate drugs in vitro Simulation of Absorption Spectra of Native and Unfolded Proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1