Large language models can better understand knowledge graphs than we thought

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge-Based Systems Pub Date : 2025-02-15 DOI:10.1016/j.knosys.2025.113060
Xinbang Dai , Yuncheng Hua , Tongtong Wu , Yang Sheng , Qiu Ji , Guilin Qi
{"title":"Large language models can better understand knowledge graphs than we thought","authors":"Xinbang Dai ,&nbsp;Yuncheng Hua ,&nbsp;Tongtong Wu ,&nbsp;Yang Sheng ,&nbsp;Qiu Ji ,&nbsp;Guilin Qi","doi":"10.1016/j.knosys.2025.113060","DOIUrl":null,"url":null,"abstract":"<div><div>When we integrate factual knowledge from knowledge graphs (KGs) into large language models (LLMs) to enhance their performance, the cost of injection through training increases with the scale of the models. Consequently, there is significant interest in developing prompt strategies that effectively incorporate KG information into LLMs. However, the community has not yet comprehensively understood how LLMs process and interpret KG information in different input formats and organizations within prompts, and researchers often rely on trial and error. To address this gap, we design extensive experiments to empirically study LLMs’ comprehension of different KG prompts. At the literal level, we reveal LLMs’ preferences for various input formats (from linearized triples to fluent natural language text). At the attention distribution level, we discuss the underlying mechanisms driving these preferences. We then investigate how the organization of structured knowledge impacts LLMs and evaluate LLMs’ robustness in processing and utilizing KG information in practical scenarios. Our experiments show that (1) linearized triples are more effective than fluent NL text in helping LLMs understand KG information and answer fact-intensive questions; (2) Different LLMs exhibit varying preferences for different organizational formats of triples; (3) LLMs with larger scales are more susceptible to noisy, incomplete subgraphs.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"312 ","pages":"Article 113060"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125001078","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

When we integrate factual knowledge from knowledge graphs (KGs) into large language models (LLMs) to enhance their performance, the cost of injection through training increases with the scale of the models. Consequently, there is significant interest in developing prompt strategies that effectively incorporate KG information into LLMs. However, the community has not yet comprehensively understood how LLMs process and interpret KG information in different input formats and organizations within prompts, and researchers often rely on trial and error. To address this gap, we design extensive experiments to empirically study LLMs’ comprehension of different KG prompts. At the literal level, we reveal LLMs’ preferences for various input formats (from linearized triples to fluent natural language text). At the attention distribution level, we discuss the underlying mechanisms driving these preferences. We then investigate how the organization of structured knowledge impacts LLMs and evaluate LLMs’ robustness in processing and utilizing KG information in practical scenarios. Our experiments show that (1) linearized triples are more effective than fluent NL text in helping LLMs understand KG information and answer fact-intensive questions; (2) Different LLMs exhibit varying preferences for different organizational formats of triples; (3) LLMs with larger scales are more susceptible to noisy, incomplete subgraphs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
期刊最新文献
Large language models can better understand knowledge graphs than we thought CoreNet: Leveraging context-aware representations via MLP networks for CTR prediction Multi-scale representation learning for heterogeneous networks via Hawkes point processes Overlapping community-based malicious user detection scheme in social networks A modified single-objective genetic algorithm for solving the rural postman problem with load-dependent costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1