Jing Guo , Lingwei Kong , Lijuan Tian , Yujun Han , Chunhong Teng , Hong Ma , Bo Tao
{"title":"Molecular docking and mutation sites of CYP57A1 enzyme with Fomesafen","authors":"Jing Guo , Lingwei Kong , Lijuan Tian , Yujun Han , Chunhong Teng , Hong Ma , Bo Tao","doi":"10.1016/j.pestbp.2025.106328","DOIUrl":null,"url":null,"abstract":"<div><div>Fomesafen is a diphenyl ether herbicide developed by Zeneca Group PLC (UK), mainly used in soybean and peanut fields to control annual and perennial broad-leaved weeds. Fomesafen has strong persistence in the soil, slow degradation rate, and is prone to harm subsequent sensitive crops. This study utilized Autodock molecular docking technology to investigate the binding and interaction between degradation enzyme CYP57A1 and small molecules of fomesafen herbicides. The <em>CYP57A1</em> gene cloned from a fomesafen-resistant fungus <em>Fusarium verticilloids,</em> belongs to a fragment of the P450 family, contains 587 bases, encodes 190 amino acids, and has an isoelectric point of 5.16. Visualization of the active surface of the protein receptor reveals that fomesafen is located in the cavity formed by the CYP57A1 protein and the cavity is small and tightly, the proteins are connected to small molecules through hydrogen bonds, halogen atom and π - cation interactions. Molecular modification of CYP57A1 enzyme was carried out using virtual amino acid mutation technology. Four key amino acids, LEU143, MET52, PHE176, and GLU177, were subjected to site-specific mutations. This study successfully constructed mutant engineered bacteria with stable protein expression. Mutations (1) MET52 > TRP showed a a decrease in enzyme activity, and the degradation rate of fomesafen was only 7.8 % of the wild-type. It is believed that MET52 is a key active site for the binding of CYP57A1 enzyme to small molecules of fomesafen, playing a crucial role in the degradation of fomesafen by this enzyme. This provides new insights into the impact on the degradation activity of fomesafen.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"209 ","pages":"Article 106328"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357525000410","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fomesafen is a diphenyl ether herbicide developed by Zeneca Group PLC (UK), mainly used in soybean and peanut fields to control annual and perennial broad-leaved weeds. Fomesafen has strong persistence in the soil, slow degradation rate, and is prone to harm subsequent sensitive crops. This study utilized Autodock molecular docking technology to investigate the binding and interaction between degradation enzyme CYP57A1 and small molecules of fomesafen herbicides. The CYP57A1 gene cloned from a fomesafen-resistant fungus Fusarium verticilloids, belongs to a fragment of the P450 family, contains 587 bases, encodes 190 amino acids, and has an isoelectric point of 5.16. Visualization of the active surface of the protein receptor reveals that fomesafen is located in the cavity formed by the CYP57A1 protein and the cavity is small and tightly, the proteins are connected to small molecules through hydrogen bonds, halogen atom and π - cation interactions. Molecular modification of CYP57A1 enzyme was carried out using virtual amino acid mutation technology. Four key amino acids, LEU143, MET52, PHE176, and GLU177, were subjected to site-specific mutations. This study successfully constructed mutant engineered bacteria with stable protein expression. Mutations (1) MET52 > TRP showed a a decrease in enzyme activity, and the degradation rate of fomesafen was only 7.8 % of the wild-type. It is believed that MET52 is a key active site for the binding of CYP57A1 enzyme to small molecules of fomesafen, playing a crucial role in the degradation of fomesafen by this enzyme. This provides new insights into the impact on the degradation activity of fomesafen.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.