Enrica Pellegrino , Katarina Jonasson , Alberto Fina , Giada Lo Re
{"title":"Plasticization of dialcohol cellulose and effect on the thermomechanical properties","authors":"Enrica Pellegrino , Katarina Jonasson , Alberto Fina , Giada Lo Re","doi":"10.1016/j.polymdegradstab.2025.111259","DOIUrl":null,"url":null,"abstract":"<div><div>Cellulosic materials are considered good alternatives to conventional plastics in packaging applications, as they are renewable, bio-based and biodegradable, having good mechanical properties at relatively low densities. However, when considering production methods, cellulose has limitations. The possibility of exploiting the production methods of conventional plastics, such as melt processing, is precluded because cellulose decomposes before reaching melting. Lowering the glass transition, partial modification of cellulose pulp to dialcohol cellulose (DAC) fibres enabled a melt processability window between the glass transition and decomposition temperatures. Water was successfully used as an aid for DAC melt processing, but the final material properties are strongly influenced by the residual moisture content, which varies depending on the environmental conditions (temperature and relative humidity). This work aims to explore the addition of glycerol, a less volatile green plasticizer, to control the processability and physical properties of DAC-based materials. Materials containing different moisture and glycerol contents were melt compounded and the effect on the melt processability was evaluated by the in-line melt viscosity during the process. The effect of different initial moisture and glycerol contents on thermal decomposition, thermal transitions, thermomechanical and mechanical properties and surface morphology has been investigated. The addition of glycerol allows for improved melt processability, decreased elasticity and enhanced deformability up to a maximum glycerol content. An excess of glycerol leads instead to a neat fall in mechanical properties and thermal stability. The possibility of post-industrial mechanical recycling was also demonstrated and the effect on the thermal decomposition and mechanical properties assessed.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"235 ","pages":"Article 111259"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025000898","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulosic materials are considered good alternatives to conventional plastics in packaging applications, as they are renewable, bio-based and biodegradable, having good mechanical properties at relatively low densities. However, when considering production methods, cellulose has limitations. The possibility of exploiting the production methods of conventional plastics, such as melt processing, is precluded because cellulose decomposes before reaching melting. Lowering the glass transition, partial modification of cellulose pulp to dialcohol cellulose (DAC) fibres enabled a melt processability window between the glass transition and decomposition temperatures. Water was successfully used as an aid for DAC melt processing, but the final material properties are strongly influenced by the residual moisture content, which varies depending on the environmental conditions (temperature and relative humidity). This work aims to explore the addition of glycerol, a less volatile green plasticizer, to control the processability and physical properties of DAC-based materials. Materials containing different moisture and glycerol contents were melt compounded and the effect on the melt processability was evaluated by the in-line melt viscosity during the process. The effect of different initial moisture and glycerol contents on thermal decomposition, thermal transitions, thermomechanical and mechanical properties and surface morphology has been investigated. The addition of glycerol allows for improved melt processability, decreased elasticity and enhanced deformability up to a maximum glycerol content. An excess of glycerol leads instead to a neat fall in mechanical properties and thermal stability. The possibility of post-industrial mechanical recycling was also demonstrated and the effect on the thermal decomposition and mechanical properties assessed.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.