Prompt-based learning for few-shot class-incremental learning

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY alexandria engineering journal Pub Date : 2025-02-18 DOI:10.1016/j.aej.2025.02.008
Jicheng Yuan , Hang Chen , Songsong Tian , Wenfa Li , Lusi Li , Enhao Ning , Yugui Zhang
{"title":"Prompt-based learning for few-shot class-incremental learning","authors":"Jicheng Yuan ,&nbsp;Hang Chen ,&nbsp;Songsong Tian ,&nbsp;Wenfa Li ,&nbsp;Lusi Li ,&nbsp;Enhao Ning ,&nbsp;Yugui Zhang","doi":"10.1016/j.aej.2025.02.008","DOIUrl":null,"url":null,"abstract":"<div><div>Few-Shot Class-Incremental Learning (FSCIL) aims to enable deep neural networks to incrementally learn new tasks from a limited number of labeled samples, while retaining knowledge of previously learned tasks, mimicking the way humans learn. In this paper, we introduce a novel approach called Prompt Learning for FSCIL (PL-FSCIL), which leverages the power of prompts alongside a pre-trained Vision Transformer (ViT) model to effectively tackle the challenges of FSCIL. Our approach explores the feasibility of directly applying visual prompts in FSCIL, using a simplified model architecture. PL-FSCIL integrates two key prompts: the Domain Prompt and the FSCIL Prompt. Both are tensors incorporated into the attention layer of the ViT network to enhance its capabilities. The Domain Prompt helps the model adapt to new data domains, while the FSCIL Prompt, in combination with a prototype classifier, boosts the model’s ability to handle incremental tasks. We evaluate the performance of PL-FSCIL on well-established benchmark datasets, including CIFAR-100 and CUB-200. The results demonstrate competitive performance, highlighting the method’s promising potential for real-world applications, particularly in scenarios where high-quality labeled data is scarce. The source code is at: <span><span>https://github.com/JichengYuan81/PL-FSCIL</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"120 ","pages":"Pages 287-295"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825001735","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Few-Shot Class-Incremental Learning (FSCIL) aims to enable deep neural networks to incrementally learn new tasks from a limited number of labeled samples, while retaining knowledge of previously learned tasks, mimicking the way humans learn. In this paper, we introduce a novel approach called Prompt Learning for FSCIL (PL-FSCIL), which leverages the power of prompts alongside a pre-trained Vision Transformer (ViT) model to effectively tackle the challenges of FSCIL. Our approach explores the feasibility of directly applying visual prompts in FSCIL, using a simplified model architecture. PL-FSCIL integrates two key prompts: the Domain Prompt and the FSCIL Prompt. Both are tensors incorporated into the attention layer of the ViT network to enhance its capabilities. The Domain Prompt helps the model adapt to new data domains, while the FSCIL Prompt, in combination with a prototype classifier, boosts the model’s ability to handle incremental tasks. We evaluate the performance of PL-FSCIL on well-established benchmark datasets, including CIFAR-100 and CUB-200. The results demonstrate competitive performance, highlighting the method’s promising potential for real-world applications, particularly in scenarios where high-quality labeled data is scarce. The source code is at: https://github.com/JichengYuan81/PL-FSCIL.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
期刊最新文献
Advanced network security with an integrated trust-based intrusion detection system for routing protocol Optimization of truss structures with two archive-boosted MOHO algorithm Numerical analysis and experimental research on the influence of column structure on the classification performance of hydrocyclone Prompt-based learning for few-shot class-incremental learning Performance enhancement of DRX sleep mode based on signaling/paging traffic arrival in 5G communication systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1