Plasma Formation on the Surface of Condensed Matter under the Effect of Powerful X-Ray Pulse

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, FLUIDS & PLASMAS Plasma Physics Reports Pub Date : 2025-02-17 DOI:10.1134/S1063780X24601640
S. F. Garanin, E. M. Kravets, G. G. Ivanova
{"title":"Plasma Formation on the Surface of Condensed Matter under the Effect of Powerful X-Ray Pulse","authors":"S. F. Garanin,&nbsp;E. M. Kravets,&nbsp;G. G. Ivanova","doi":"10.1134/S1063780X24601640","DOIUrl":null,"url":null,"abstract":"<p>In a number of experiments, the surfaces of condensed matter, for example, the electrodes of pulsed power facilities, are exposed to powerful pulsed X-ray radiation with an energy flux density of ~1 TW/cm<sup>2</sup>. The source of this radiation can be, for example, Z-pinches formed by current compression of multi-wire liners. Under the effect of this radiation, evaporation and plasma formation processes can occur on the surface of the electrodes. This paper provides a theoretical examination of these processes. In the case where the plasma layer thickness is small compared to the characteristic dimensions of the electrodes, plasma formation can be described by one-dimensional equations of magnetohydrodynamics taking radiation transfer into account. One-dimensional calculations performed for the experimental conditions at the Angara-5-1 facility (energy flux density coming from the pinch, ~0.2 TW/cm<sup>2</sup>, radiation exposure time ~15 ns, electrode material Fe), have shown that the characteristic plasma temperature in this case is ~40 eV, density ~3 mg/cm<sup>3</sup>, and its expansion speed is ~60 km/s. It is interesting that the magnetic fields in these experiments, which are relatively small (~0.8 MG) and are incapable to lead to plasma formation, restrain the expansion of the plasma with their pressure and affect its characteristic values and expansion speed. The speed obtained in the calculation is somewhat less than that measured experimentally using an X-ray electron-optical converter (~90 km/s), that may be due to not one dimensional turbulent plasma expansion or due to experimental errors.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 12","pages":"1532 - 1548"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063780X24601640","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

In a number of experiments, the surfaces of condensed matter, for example, the electrodes of pulsed power facilities, are exposed to powerful pulsed X-ray radiation with an energy flux density of ~1 TW/cm2. The source of this radiation can be, for example, Z-pinches formed by current compression of multi-wire liners. Under the effect of this radiation, evaporation and plasma formation processes can occur on the surface of the electrodes. This paper provides a theoretical examination of these processes. In the case where the plasma layer thickness is small compared to the characteristic dimensions of the electrodes, plasma formation can be described by one-dimensional equations of magnetohydrodynamics taking radiation transfer into account. One-dimensional calculations performed for the experimental conditions at the Angara-5-1 facility (energy flux density coming from the pinch, ~0.2 TW/cm2, radiation exposure time ~15 ns, electrode material Fe), have shown that the characteristic plasma temperature in this case is ~40 eV, density ~3 mg/cm3, and its expansion speed is ~60 km/s. It is interesting that the magnetic fields in these experiments, which are relatively small (~0.8 MG) and are incapable to lead to plasma formation, restrain the expansion of the plasma with their pressure and affect its characteristic values and expansion speed. The speed obtained in the calculation is somewhat less than that measured experimentally using an X-ray electron-optical converter (~90 km/s), that may be due to not one dimensional turbulent plasma expansion or due to experimental errors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Physics Reports
Plasma Physics Reports 物理-物理:流体与等离子体
CiteScore
1.90
自引率
36.40%
发文量
104
审稿时长
4-8 weeks
期刊介绍: Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.
期刊最新文献
Full-Wave Modeling of Electron Cyclotron Plasma Heating at the Fundamental and Second Harmonics for the GDMT Facility Plasma Formation on the Surface of Condensed Matter under the Effect of Powerful X-Ray Pulse Plasma Pyrolysis of Methane Using a DC Plasma Torch Gasdynamic and Kinetic Stages of the Gas Z-Pinch Impact of Resonant Helical Magnetic Fields on the Correlations between Density Bursts and Magnetic Fluctuation in IR-T1 Tokamak
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1